Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA-hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water-deficit tolerance of crop plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pbi.12032DOI Listing

Publication Analysis

Top Keywords

cbp80 gene
12
crop plants
8
transgenic plants
8
higher tolerance
8
plants
5
drought
5
down-regulation cbp80
4
gene expression
4
expression strategy
4
strategy engineer
4

Similar Publications

The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare).

Sci Rep

August 2024

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.

To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.

View Article and Find Full Text PDF

The Nuclear Cap-Binding Complex, a multitasking binding partner of RNA polymerase II transcripts.

J Biochem

December 2023

Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Agriculture Bldg. 7A, Room 703, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.

In eukaryotic cells, RNAs transcribed by RNA polymerase-II receive the modification at the 5' end. This structure is called the cap structure. The cap structure has a fundamental role for translation initiation by recruiting eukaryotic translation initiation factor 4F (eIF4F).

View Article and Find Full Text PDF

PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII.

Mol Cell

January 2023

Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA. Electronic address:

PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes.

View Article and Find Full Text PDF

Drought is one of the main climate threats limiting crop production. Potato is one of the four most important food crop species worldwide and is sensitive to water shortage. The CBP80 gene was shown to affect Arabidopsis and potato responses to drought by regulating the level of microRNA159 and, consequently, the levels of the MYB33 and MYB101 transcription factors (TFs).

View Article and Find Full Text PDF

Appended to the 5' end of nascent RNA polymerase II transcripts is 7-methyl guanosine (mG-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated mG-cap and that the down-regulation of the trimethylguanosine synthetase-1-reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!