Antimicrobial photodynamic therapy (aPDT) is an emerging treatment for bacterial infections that is becoming increasingly more attractive because of its effectiveness against multi-antibiotic-resistant strains and unlikelihood of inducing bacterial resistance. Among the strategies to enhance the efficacy of PDT against Gram-negative bacteria, the binding to a cationic antimicrobial peptide offers the attractive prospect for improving both the water solubilty and the localization of the photoactive drug in bacteria. In this work we have compared a number of free and apidaecin-conjugated photosensitizers (PSs) differing in structure and charge. Our results indicate that the conjugation of per se ineffective highly hydrophobic PSs to a cationic peptide produces a photosensitizing agent effective against Gram-negative bacteria. Apidaecin cannot improve the phototoxic activity of cationic PSs, which mainly depends on a very high yield of singlet oxygen production in the surroundings of the bacterial outer membrane. Apidaecin-PS conjugates appear most promising for treatment protocols requiring repeated washing after sensitizer delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm301509nDOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
8
gram-negative bacteria
8
synthesis characterization
4
characterization photoinduced
4
photoinduced antibacterial
4
antibacterial activity
4
activity porphyrin-type
4
porphyrin-type photosensitizers
4
photosensitizers conjugated
4
conjugated antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!