Purpose: This work aims to investigate the combination of morphological and texture parameters in distinguishing between malignant and benign breast tumors in ultrasound images.

Methods: Linear discriminant analysis was applied to sets of up to five parameters, and then the performances were assessed using the area A(z) (± standard error) under the receiver operator characteristic curve, accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value, and negative predictive value.

Results: The most relevant individual parameter was the normalized residual value (nrv), calculated from the convex polygon technique. The best performance among all studied combinations was achieved by two morphological and three texture parameters (nrv, con, std, R, and asm(i)), which correctly distinguished nearly 85% of the breast tumors.

Conclusions: This result indicates that the combination of morphological and texture parameters may be useful to assist physicians in the diagnostic process, especially if it is associated with an automatic classification tool.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4766268DOI Listing

Publication Analysis

Top Keywords

texture parameters
12
parameters distinguishing
8
breast tumors
8
tumors ultrasound
8
combination morphological
8
morphological texture
8
parameters
5
assessing combined
4
combined performance
4
texture
4

Similar Publications

Radiomics-based Machine Learning Approach to Predict Chemotherapy Responses in Colorectal Liver Metastases.

J Anus Rectum Colon

January 2025

Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Objectives: This study explored the clinical utility of CT radiomics-driven machine learning as a predictive marker for chemotherapy response in colorectal liver metastasis (CRLM) patients.

Methods: We included 150 CRLM patients who underwent first-line doublet chemotherapy, dividing them into a training cohort (n=112) and a test cohort (n=38). We manually delineated three-dimensional tumor volumes, selecting the largest liver metastasis for measurement, using pretreatment portal-phase CT images and extracted 107 radiomics features.

View Article and Find Full Text PDF

Background: Texture analysis has the potential to deliver quantitative imaging markers. Patients receiving computed tomography (CT)-guided percutaneous bone biopsies could be characterized using texture analysis derived from CT. Especially for breast cancer (BC) patients, it could be crucial to better predict the outcome of the biopsy to better reflect the immunohistochemistry status of the tumor.

View Article and Find Full Text PDF

Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.

View Article and Find Full Text PDF

Attention mechanisms such as the Convolutional Block Attention Module (CBAM) can help emphasize and refine the most relevant feature maps such as color, texture, spots, and wrinkle variations for the avocado ripeness classification. However, the CBAM lacks global context awareness, which may prevent it from capturing long-range dependencies or global patterns such as relationships between distant regions in the image. Further, more complex neural networks can improve model performance but at the cost of increasing the number of layers and train parameters, which may not be suitable for resource constrained devices.

View Article and Find Full Text PDF

Spherical harmonics texture extraction for versatile analysis of biological objects.

PLoS Comput Biol

January 2025

European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.

The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!