Relativistic effects on nuclear magnetic shieldings of CH(n)X(4-n) and CHXYZ (X, Y, Z = H, F, Cl, Br, I).

J Chem Phys

Physics Department, Natural and Exact Science Faculty, UBA and IFIBA Conicet, Buenos Aires, Argentina.

Published: December 2012

Nuclear magnetic shieldings of both carbon and hydrogen atoms of haluro methyl molecules are highly influenced by the substitution of one or more hydrogen by halogen heavy atoms. We applied the linear response elimination of small components, LRESC, formalism to calculate such shieldings and learn whether including only few terms is enough for getting quantitative reproduction of the total shieldings or not. First, we discuss the contribution of all leading relativistic corrections to σ(C), in CHX(2)I molecular models with X = H, F, and Cl, and show that spin-orbit (SO) effects are the main ones. After adding the SO effects to the non-relativistic (NR) results, we obtain ~ 97% (93%) of the total LRESC values for σ(C) (σ(H)). The magnitude of SO terms increases when the halogen atom becomes heavier. In this case, such contributions to σ(C) can be extrapolated as a function of Z, the halogen atomic number. Furthermore, when paramagnetic spin-orbit (PSO) contributions are also considered, we obtain results that are within 1% of the total LRESC value. Then we study in detail the main electronic mechanisms involved to contribute C and H shieldings on CH(n)X(4 - n) (n = 1, 3), and CHXYZ (X, Y, Z = F, Cl, Br, I) model compounds. The pattern of σ(C) for all series of compounds follows a normal halogen dependence (NHD), though with different rate of increase. A special family of compounds is that of CHF(2)X for which σ(nr)(C) follows an inverse halogen dependence though the total shielding have a NHD due to the SO contributions. For the series CH(3)X (X = F, Cl, Br and I), we found that σ(SO) ~ Z(X) (2.53). Another important finding of this work is the logarithmic dependence of σ(SO)(C) with the substituent atomic number: ln σ(SO)(C) = A(X) + a(X) Z(Y) for both family of compounds CH(2)XY and CHX(2)Y. We also performed four-component calculations using the spin-free Hamiltonian to obtain SO contributions within a four-component framework.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4768470DOI Listing

Publication Analysis

Top Keywords

nuclear magnetic
8
magnetic shieldings
8
total lresc
8
atomic number
8
halogen dependence
8
family compounds
8
shieldings
5
halogen
5
relativistic effects
4
effects nuclear
4

Similar Publications

Contemporary Multi-modality Imaging of Prosthetic Aortic Valves.

Rev Cardiovasc Med

January 2025

Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.

With the aging of the general population and the rise in surgical and transcatheter aortic valve replacement, there will be an increase in the prevalence of prosthetic aortic valves. Patients with prosthetic aortic valves can develop a wide range of unique pathologies compared to the general population. Accurate diagnosis is necessary in this population to generate a comprehensive treatment plan.

View Article and Find Full Text PDF

Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Deciphering the Topology of Sitagliptin Using an Integrated Approach.

ACS Omega

January 2025

Science Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Determining the structure of sitagliptin is crucial for ensuring its effectiveness and safety as a DPP-4 inhibitor used to treat type 2 diabetes. Accurate structure determination is vital for both drug development and maintaining quality control in manufacturing. This study integrates the advanced techniques of solid-state nuclear magnetic resonance (NMR) spectroscopy, three-dimensional (3D) electron diffraction, and density functional theory (DFT) calculations to investigate the structural intricacies of sitagliptin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!