The transient time correlation function is a standard method for measuring transport properties in simulations. It represents a special case of a more general theorem, the dissipation theorem, that indirectly calculates phase function averages though the use of the dissipation function. These indirect averages often have significantly less statistical error than direct averages. Recently, it has been demonstrated that a local version of the fluctuation theorem can be derived with a well defined deviation from the global result at sufficiently low fields. Here we show that a similar local expression can be obtained for the dissipation theorem, providing a way of determining values of phase functions by monitoring the fluctuations of phase functions in a small region of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4768897 | DOI Listing |
Science
December 2024
Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA.
Planck's law ignores but does not prohibit black-body radiation (BBR) from being circularly polarized. BBR from nanostructured filaments with twisted geometry from nanocarbon or metal has strong ellipticity from 500 to 3000 nanometers. The submicrometer-scale chirality of these filaments satisfies the dimensionality requirements imposed by fluctuation-dissipation theorem and requires symmetry breaking in absorptivity and emissivity according to Kirchhoff's law.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
Alignment effects caused by a heat flow in the cholesteric liquid crystal phase of three coarse grained molecular model systems based on the Gay-Berne potential have been studied by molecular dynamics simulation. In order to keep the systems homogeneous, the Evans heat flow algorithm, where a fictitious mechanical heat field rather than a temperature gradient drives the heat flow, was used. It was found that the cholesteric axis orients in such a way that the heat flow and thereby the irreversible energy dissipation rate are minimized.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
The magnetic acceleration noise (MAN) that stems from the eddy current dissipation of a test mass (TM) serves as an important source of noise for space inertial sensors. Given the problem that the eddy current dissipation magnetic acceleration noise (ECDMAN) of a cubic TM defies analytical solutions, an analytical model of ECDMAN for a spherical TM, which has the same volume as the cubic TM, is systematically derived on the basis of the principles of electromagnetism and the fluctuation-dissipation theorem, and this model can be used as an approximate analytical model for the evaluation of this noise term. Based on the approximate analytical model, with the TM of the LISA Pathfinder (LPF) as the research object, this paper obtains a modification coefficient using the approach of combining the analytical method with the finite element method (FEM), and establishes a semi-analytical model of ECDMAN for the cubic TM.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain.
We derive the algorithms for the dynamics of the standard dissipative particle dynamics model (DPD) for a velocity-dependent friction coefficient. By introducing simple estimators of the local rate of strain we propose an interparticle friction coefficient that decreases for high deformation rates, eventually leading to the macroscopic shear-thinning behaviour. We have derived the appropriate fluctuation-dissipation theorems that include the correction of the spurious behaviour due to the coupling of the non-linear friction and the fluctuations.
View Article and Find Full Text PDFMacromolecules
November 2024
Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland.
A molecular Kuhn-scale model is presented for the stress relaxation dynamics of entangled polymer networks. The governing equation of the model is given by the general form of the linearized Langevin equation. Based on the fluctuation-dissipation theorem, the stress relaxation modulus is derived using the normal mode representation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!