Prediction of the sound field in large urban environments has been limited thus far by the heavy computational requirements of conventional numerical methods such as boundary element (BE) or finite-difference time-domain (FDTD) methods. Recently, a considerable amount of work has been devoted to developing energy-based methods for this application, and results have shown the potential to compete with conventional methods. However, these developments have been limited to two-dimensional (2-D) studies (along street axes), and no real description of the phenomena at issue has been exposed. Here the mathematical theory of diffusion is used to predict the sound field in 3-D complex urban environments. A 3-D diffusion equation is implemented by means of a simple finite-difference scheme and applied to two different types of urban configurations. This modeling approach is validated against FDTD and geometrical acoustic (GA) solutions, showing a good overall agreement. The role played by diffraction near buildings edges close to the source is discussed, and suggestions are made on the possibility to predict accurately the sound field in complex urban environments, in near real time simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4763552 | DOI Listing |
Sci Rep
January 2025
Beijing Gilface Technology Co., Ltd., Beijing, 100012, China.
In order to solve the problem of logging calibration without a free pipe in the process of acoustic variable density logging and the subjective problem of the free pipe calibration method, this paper studies an attenuation rate calibration method based on acoustic variable density logging. Using the developed acoustic wave probe response relationship device and the acoustic wave probe calibration device, the response consistency of the receiving probe of the acoustic wave instrument and the frequency of the transmitting probe can be calibrated in the laboratory, and the response consistency and frequency calibration coefficient can be obtained. Through this coefficient, the acoustic wave attenuation rate can be derived.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China.
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!