The field of microfluidics has drastically contributed to downscale the size of benchtop experiments to the dimensions of a chip without compromising results. However, further miniaturization and the ability to directly manipulate individual molecules require a platform that permits organized molecular transport. The motor proteins and microtubules that carry out orderly intracellular transport are ideal for driving in vitro nanotransport. Here, we demonstrate that a reconstruction of the cellular kinesin/dynein-microtubule system in nanotracks provides a molecular total analysis system (MTAS) to control massively parallel chemical reactions. The mobility of kinesin and a microtubule dissociation method enable orientation of a microtubule in an array for directed transport of reactive molecules carried by kinesin or dynein. The binding of glutathione S-transferase (GST) to glutathione (GSH) and the binding of streptavidin to biotin are visualized as colocalizations of quantum dots (Q-dots) when motor motilities bring them into contact. The organized nanotransport demonstrated here suggests the feasibility of using our platform to perform parallel biochemical reactions focused at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3045038DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
reactive molecules
8
molecules carried
8
motor proteins
8
colocalization quantum
4
dots reactive
4
carried motor
4
proteins polarized
4
polarized microtubule
4
microtubule arrays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!