Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction.

Int J Mol Med

Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.

Published: February 2013

Prion disorder-related neurodegenerative diseases are characterized by the accumulation of prion protein (PrP) scrapie isoform (PrPsc) within the central nervous system. PrPsc induces neuronal cell death by increasing intracellular generation of reactive oxygen species (ROS). Lactoferrin (LF) is an 80 kDa protein, which has antioxidant abilities due to the scavenging of ROS. The effects of LF treatment on PrP (106-126)-mediated neurotoxicity and ROS generation were the focus of this study. LF treatment protected against PrP (106-126)-induced neuronal cell death and decreased ROS generation. The reduced ROS generation prevented PrP (106-126)-induced mitochondrial dysfunction. Moreover, PrP (106-126)-induced protein activation including c-Jun N-terminal kinase and caspase-3 were blocked by LF treatment. These results demonstrated that LF protects neuronal cells against PrP (106-126)-mediated neurotoxicity through the scavenging of ROS and provide evidence that LF treatment prevents neuronal cell death caused by PrP (106-126).

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2012.1198DOI Listing

Publication Analysis

Top Keywords

cell death
16
neuronal cell
12
ros generation
12
prp 106-126-induced
12
neuronal cells
8
mitochondrial dysfunction
8
scavenging ros
8
prp 106-126-mediated
8
106-126-mediated neurotoxicity
8
prp
7

Similar Publications

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma.

BMC Cancer

January 2025

Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.

Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!