The ribosome is an essential and highly complex biological system in all living cells. A large body of literature on the assembly of the ribosome in vitro is available, but a clear picture of this process inside the cell has yet to emerge. Here, we directly characterized in vivo ribosome assembly intermediates and associated assembly factors from wild-type Escherichia coli cells using a general quantitative mass spectrometry (qMS) approach. The presence of distinct populations of ribosome assembly intermediates was verified using an in vivo stable isotope pulse-labeling approach, and their exact ribosomal protein contents were characterized against an isotopically labeled standard. The model-free clustering analysis of the resultant protein levels for the different ribosomal particles produced four 30S assembly groups that correlate very well with previous in vitro assembly studies of the small ribosomal subunit and six 50S assembly groups that clearly define an in vivo assembly landscape for the larger ribosomal subunit. In addition, de novo proteomics identified a total of 21 known and potentially new ribosome assembly factors co-localized with various ribosomal particles. These results represent new in vivo assembly maps of the E. coli 30S and 50S subunits, and the general qMS approach should prove to be a solid platform for future studies of ribosome biogenesis across a host of model organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568210 | PMC |
http://dx.doi.org/10.1016/j.jmb.2012.11.040 | DOI Listing |
Breast J
January 2025
Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
This study aims to investigate the potential causal link between mitochondrial function and breast cancer using the Mendelian randomization (MR) analysis. The data used for this study were obtained from genomewide association studies (GWAS) databases on mitochondrial biological function and breast cancer. Mitochondrial function was considered the exposure variable, breast cancer the outcome variable, and specific single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs).
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFPhytomedicine
December 2024
Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China. Electronic address:
Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
BMC Genomics
December 2024
Department of Biological Sciences, University of Bergen, Bergen, N-5020, Norway.
Background: Fervidobacterium is a genus of thermophilic anaerobic Gram-negative rod-shaped bacteria belonging to the phylum Thermotogota. They can grow through fermentation on a wide range of sugars and protein-rich substrates. Some can also break down feather keratin, which has significant biotechnological potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!