The small diameter P neurone (7 microns) is here characterized as an afferent of the crab thoracic-coxal muscle receptor organ (TCMRO), in addition to the S and T neurones (50-60 microns). The P neurone employs both passively conducted, graded amplitude receptor potentials and, superimposed upon these, either graded active membrane responses or constant amplitude action potentials. Intracellularly recorded receptor potential waveforms reflect the dynamic component of stretch more strongly than receptor length, while action potentials at the onset of stretch accentuate the phasic response characteristics of this neurone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(90)90562-pDOI Listing

Publication Analysis

Top Keywords

action potentials
12
crab thoracic-coxal
8
thoracic-coxal muscle
8
muscle receptor
8
receptor organ
8
receptor
5
potentials 'non-spiking'
4
neurone
4
'non-spiking' neurone
4
neurone graded
4

Similar Publications

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

Recent Developments in Azetidinone-Azole Conjugates: Emerging Antimicrobial Potentials.

Med Chem

January 2025

Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.

The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!