Previous research has demonstrated that the dual PPARα/γ agonist tesaglitazar reduces atherosclerosis in a mouse model of hyperlipidemia by reducing both lipid content and inflammation in the aorta. However, much of the underlying mechanism of tesaglitazar in non-alcoholic fatty liver disease (NAFLD) remains less clear. The aim of the present study was to determine whether tesaglitazar attenuates NAFLD and atherosclerosis development in diabetic low-density lipoprotein receptor-deficient (LDLr(-/-)) mice. Female LDLr(-/-) mice (3 weeks old) were induced by a high-fat diet (HFD) combined with low-dose streptozotocin (STZ) injection to develop an animal model of type 2 diabetes (T2DM). The mice were randomly divided into two groups: diabetic group (untreated diabetic mice, n=15) and tesaglitazar therapeutic group (n=15, 20 μg/kg/day oral treatment for 6 weeks). Fifteen LDLr(-/-) mice were fed with an HFD as the control group. Tesaglitazar decreased serum glucose and lipid levels compared with the diabetic mice. Tesaglitazar significantly reduced atherosclerotic lesions, lipid accumulation in the liver, macrophage infiltration, and decreased total hepatic cholesterol and triglyceride content compared to the diabetic mice. In addition, tesaglitazar reduced inflammatory markers at both the serum and mRNA levels. Our data suggest that tesaglitazar may be effective in preventing NAFLD and atherosclerosis in a pre-existing diabetic condition by regulating glucose and lipid metabolism, and the inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494130PMC
http://dx.doi.org/10.3892/etm.2012.713DOI Listing

Publication Analysis

Top Keywords

ldlr-/- mice
12
diabetic mice
12
tesaglitazar
9
non-alcoholic fatty
8
fatty liver
8
liver disease
8
atherosclerosis development
8
development diabetic
8
diabetic low-density
8
low-density lipoprotein
8

Similar Publications

Metabolic requirements of dividing hepatocytes are prerequisite for liver regeneration after injury. In contrast to transcriptional dynamics during liver repair, its metabolic dependencies remain poorly defined. Here, we screened metabolic genes differentially regulated during liver regeneration, and report that SLC13A2, a transporter for TCA cycle intermediates, is decreased in rapid response to partial hepatectomy in mice and recovered along restoration of liver mass and function.

View Article and Find Full Text PDF

UGP2, a novel target gene of TP53, inhibits endothelial cells apoptosis and atherosclerosis.

Life Sci

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.

View Article and Find Full Text PDF

Chitinase-3-like Protein 1 Reduces the Stability of Atherosclerotic Plaque via Impairing Macrophagic Efferocytosis.

J Cardiovasc Transl Res

January 2025

Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China.

CHI3L1 is strongly associated with atherosclerosis, but its role in macrophages remains unknown. In this study, we observed a significant up-regulation of CHI3L1 in both carotid plaques and serum of symptomatic patients, and demonstrated that CHI3L1 impairs the efferocytosis of macrophages by down-regulating crucial efferocytic mediator MFGE8 through inhibiting ATF2, which binds directly to the enhancer of MFGE8. In human plaques, we observed a negative correlation between CHI3L1 expression and both ATF2 and MFGE8 levels, further proved their involvement in plaque destabilization.

View Article and Find Full Text PDF

Hypercholesterolemia is a risk factor of coronary heart disease and cholesterol-lowering probiotics are seen as alternative to drugs for the management of this condition. In the present study, we evaluated the cholesterol-lowering activity of KS6I1 in high-cholesterol diet-induced hypercholesterolemic mice. The mice were fed with high-cholesterol diet (HCD) and were divided into three groups: HCD group, KS6I1 group (fed with HCD + 200 μl of 10 CFU/ml KS6I1), and L.

View Article and Find Full Text PDF

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!