Theoretical models suggest that gene silencing at the nuclear periphery may involve "closing" of chromatin by transcriptional repressors, such as histone deacetylases (HDACs). Here we provide experimental evidence confirming these predictions. Histone acetylation, chromatin compactness, and gene repression in lamina-interacting multigenic chromatin domains were analyzed in Drosophila S2 cells in which B-type lamin, diverse HDACs, and lamina-associated proteins were downregulated by dsRNA. Lamin depletion resulted in decreased compactness of the repressed multigenic domain associated with its detachment from the lamina and enhanced histone acetylation. Our data reveal the major role for HDAC1 in mediating deacetylation, chromatin compaction, and gene silencing in the multigenic domain, and an auxiliary role for HDAC3 that is required for retention of the domain at the lamina. These findings demonstrate the manifold and central involvement of class I HDACs in regulation of lamina-associated genes, illuminating a mechanism by which these enzymes can orchestrate normal and pathological development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511463 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049692 | PLOS |
Neoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFHum Cell
January 2025
The First Branch, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Street, Aimin District, Mudanjiang, 157000, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, and the neuroprotective effects of nimodipine following SAH have been well-documented. Sirtuin 3 (SIRT3), a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, plays a significant role in mitigating oxidative stress in various neurodegenerative conditions. However, the role of SIRT3 in the neuroprotective mechanisms of nimodipine after SAH remains unclear.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive.
View Article and Find Full Text PDFElife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFJ Transl Med
January 2025
Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.
Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!