The yeast Saccharomyces cerevisiae undergoes a mitochondrial-dependent programmed cell death in response to different stimuli, such as acetic acid, with features similar to those of mammalian apoptosis. However, the upstream signaling events in this process, including those leading to mitochondrial membrane permeabilization, are still poorly characterized. Changes in sphingolipid metabolism have been linked to modulation of apoptosis in both yeast and mammalian cells, and ceramides have been detected in mitochondria upon apoptotic stimuli. In this study, we aimed to characterize the contribution of enzymes involved in ceramide metabolism to apoptotic cell death induced by acetic acid. We show that isc1Δ and lag1Δ mutants, lacking inositol phosphosphingolipid phospholipase C and ceramide synthase, respectively, exhibited a higher resistance to acetic acid that was associated with lower levels of some phytoceramide species. Consistently, these mutant cells displayed lower levels of ROS production and reduced mitochondrial alterations, such as mitochondrial fragmentation and degradation, and decreased translocation of cytochrome c into the cytosol in response to acetic acid. These results suggest that ceramide production contributes to cell death induced by acetic acid, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p and de novo synthesis catalyzed by Lag1p, and provide the first in vivo indication of its involvement in mitochondrial outer membrane permeabilization in yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511487PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048571PLOS

Publication Analysis

Top Keywords

acetic acid
20
membrane permeabilization
12
cell death
12
mitochondrial outer
8
outer membrane
8
ceramide metabolism
8
death induced
8
induced acetic
8
lower levels
8
acetic
5

Similar Publications

Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.

View Article and Find Full Text PDF

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

Revealing the mechanism underlying the viscosity improvement of rice protein yogurt by the presence of in-situ-produced dextrans.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:

The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.

View Article and Find Full Text PDF

Background: S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored.

View Article and Find Full Text PDF

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!