In multiple sclerosis (MS), treatment with the monoclonal antibody natalizumab effectively reduces the formation of acute lesions in the central nervous system (CNS). Natalizumab binds the integrin very late antigen (VLA)-4, expressed on the surface of immune cells, and inhibits VLA-4 dependent transmigration of circulating immune-cells across the vascular endothelium into the CNS. Recent studies suggested that natalizumab treated MS patients have an increased T-cell pool in the blood compartment which may be selectively enriched in activated T-cells. Proposed causes are sequestration of activated T-cells due to reduced extravasation of activated and pro-inflammatory T-cells or due to induction of VLA-4 mediated co-stimulatory signals by natalizumab. In this study we examined how natalizumab treatment altered the distribution of effector and memory T-cell subsets in the blood compartment and if T-cells in general or myelin-reactive T-cells in particular showed signs of increased immune activation. Furthermore we examined the effects of natalizumab on CD4(+) T-cell responses to myelin in vitro. Natalizumab-treated MS patients had significantly increased numbers of effector-memory T-cells in the blood. In T-cells from natalizumab-treated MS patients, the expression of TNF-α mRNA was increased whereas the expression of fourteen other effector cytokines or transcription factors was unchanged. Natalizumab-treated MS patients had significantly decreased expression of the co-stimulatory molecule CD134 on CD4(+)CD26(HIGH) T-cells, in blood, and natalizumab decreased the expression of CD134 on MBP-reactive CD26(HIGH)CD4(+) T-cells in vitro. Otherwise CD4(+) T-cells from natalizumab-treated and untreated MS patients showed similar responses to MBP. In conclusion natalizumab treatment selectively increased the effector memory T-cell pool but not the activation state of T-cells in the blood compartment. Myelin-reactive T-cells were not selectively increased in natalizumab treated MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511477PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047578PLOS

Publication Analysis

Top Keywords

t-cells
13
blood compartment
12
natalizumab-treated patients
12
t-cells blood
12
natalizumab
10
cd4+ t-cells
8
multiple sclerosis
8
natalizumab treated
8
patients increased
8
t-cell pool
8

Similar Publications

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Background: HIV continues to be a public health concern in Mexico and Latin America due to an increase in new infections, despite a decrease being observed globally. Treatment adherence is a pillar for achieving viral suppression. It prevents the spread of the disease at a community level and improves the quality and survival of people living with HIV.

View Article and Find Full Text PDF

γδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!