In most solid cancers, cells harboring oncogenic mutations represent only a sub-fraction of the entire population. Within this sub-fraction the expression level of mutated proteins can vary significantly due to cellular variability limiting the efficiency of targeted therapy. To address the causes of the heterogeneity, we performed a systematic analysis of one of the most frequently mutated pathways in cancer cells, the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Among others PI3K signaling is activated by the hepatocyte growth factor (HGF) that regulates proliferation of hepatocytes during liver regeneration but also fosters tumor cell proliferation. HGF-mediated responses of PI3K signaling were monitored both at the single cell and cell population level in primary mouse hepatocytes and in the hepatoma cell line Hepa1_6. Interestingly, we observed that the HGF-mediated AKT responses at the level of individual cells is rather heterogeneous. However, the overall average behavior of the single cells strongly resembled the dynamics of AKT activation determined at the cell population level. To gain insights into the molecular cause for the observed heterogeneous behavior of individual cells, we employed dynamic mathematical modeling in a stochastic framework. Our analysis demonstrated that intrinsic noise was not sufficient to explain the observed kinetic behavior, but rather the importance of extrinsic noise has to be considered. Thus, distinct from gene expression in the examined signaling pathway fluctuations of the reaction rates has only a minor impact whereas variability in the concentration of the various signaling components even in a clonal cell population is a key determinant for the kinetic behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508424 | PMC |
http://dx.doi.org/10.3389/fphys.2012.00451 | DOI Listing |
Heliyon
January 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China.
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).
View Article and Find Full Text PDFCureus
December 2024
Hematology/Oncology, University of Kansas Medical Center, Kansas City, USA.
A 58-year-old male, with a history of human immunodeficiency virus (HIV) and stage 4 left frontotemporal squamous cell carcinoma (SCC), presented with new-onset neck pain. He was diagnosed with HIV five years prior. The patient had a cluster of differentiation 4 (CD4) count of 53 cells/mm³ and a high viral load, later suppressed with bictegravir, emtricitabine, and tenofovir alafenamide (Biktarvy).
View Article and Find Full Text PDFJ Taibah Univ Med Sci
December 2024
Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.
Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).
Cureus
January 2025
Emergency Medicine, University Hospitals St. John Medical Center, Westlake, USA.
Autoimmune hemolytic anemia (AIHA) is a condition that causes an individual's immune system to destroy its own red blood cells. Immune cells are activated against the red blood cell antigens to induce hemolysis. Patients typically present with symptomatic anemia when the extent of hemolysis overcomes the bone marrow's ability to compensate.
View Article and Find Full Text PDFBiomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!