Matrix metalloproteinases (MMPs) have been implicated in the cleavage of several proinflammatory chemokines, thereby modulating their function and having an impact on the inflammatory process. However, in vivo evidence of such a role remains limited. In this study, we use IL-1β-induced peritonitis as a model for an acute immune response, which is initiated by neutrophil influx followed by macrophage infiltration within a few hours of IL-1β injection into the peritoneal cavity. Using single and double knockout mice for MMP-2 and MMP-9, we show that MMP-2 and MMP-9 act synergistically mainly at the initial step of neutrophil recruitment into the peritoneal cavity. The use of bone marrow chimeric mice revealed the cellular sources of MMP-2 and MMP-9 to be distinct, with resident cells being the source of the former and infiltrating leukocytes the source of the latter. We show that the omentum is the main site of neutrophil entry into the peritoneal cavity, where MMP-2 and MMP-9 act synergistically to potentiate the action of CXCL5 (ENA-78/ LIX), thereby, promoting neutrophil migration into the peritoneal cavity. To our knowledge, this is the first in vivo demonstration of MMP-2 and MMP-9 processing of a chemokine that has been directly correlated with an enhanced chemoattracting function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1202286 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey.
Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy.
Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!