Lineage-committed T effectors generated in response to Ag during the inflammatory phase are destined to die during termination of the immune response. We present evidence to suggest that molecular signatures of lineage commitment are reflected in apoptotic cascades activated in CD4(+) T effectors. Exemplifying this, ablation of inducible NO synthase (iNOS) protected effector-memory T (TEM) cells, but not T(Naive) or central-memory T cells, activated in vitro, from apoptosis triggered by cytokine deprivation. Furthermore, attrition of T effectors generated in the secondary, but not the primary, response to Ag was substantially reduced in mice, which received iNOS inhibitors. Distinct patterns of iNOS expression were revealed in wild-type TEM effectors undergoing apoptosis, and ablation of iNOS protein in primary and TEM wild-type effectors confirmed observations made in iNOS(-/-) cells. Describing molecular correlates of this dependence, mitochondrial damage, activation of the protein Bax, and release from mitochondria of the apoptosis-inducing factor were selectively abrogated in iNOS(-/-) TEM effectors. Suggesting that iNOS dependence was linked to the functional identity of T cell subsets, both iNOS induction and apoptosis were compromised in IFN-γ(-/-) TEM effectors, which mirrored the response patterns of iNOS(-)(/)(-) TEM. Collectively, these observations suggest that programs regulating deletion and differentiation are closely integrated and likely encoded during lineage commitment of T effectors.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1103694DOI Listing

Publication Analysis

Top Keywords

lineage commitment
12
tem effectors
12
effectors
9
cd4+ effectors
8
effectors generated
8
inos-/- tem
8
inos
6
tem
6
apoptotic programs
4
programs determined
4

Similar Publications

Article Synopsis
  • This chapter focuses on using lineage barcodes, which are measurements of cell evolution through mutations, to study single cells' development and fate changes.
  • It presents Quantitative Fate Mapping (QFM) and its computational tools, such as the Phylotime model for cell phylogeny and the ICE-FASE algorithm for analyzing progenitor cells.
  • The importance of proper sampling for interpreting results is highlighted, offering a comprehensive framework for understanding how cell fates evolve over time.
View Article and Find Full Text PDF

Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate.

Cell Rep

December 2024

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:

Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.

View Article and Find Full Text PDF

ID3 promotes erythroid differentiation and is repressed by a TAL1/PRMT6 complex.

J Biol Chem

December 2024

University of Stuttgart, Institute of Biomedical Genetics, Department of Eukaryotic Genetics, Allmandring 31, 70569 Stuttgart, Germany. Electronic address:

Erythropoiesis is controlled by transcription factors that recruit epigenetic cofactors to establish and maintain erythrocyte-specific gene expression patterns while repressing alternative lineage commitment. The transcription factor TAL1 is critical for establishing erythroid gene expression. It acts as an activator or repressor of genes, depending on associated epigenetic cofactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!