Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34499 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India.
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China. Electronic address:
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
Hydrogel three-dimensional (3D) printing has emerged as a highly valuable fabrication tool for applications ranging from electronics and biomedicine. While conventional hydrogels such as gelatin, alginate, and hyaluronic acid satisfy biocompatibility requirements, they distinctly lack reproducibility in terms of mechanical properties and 3D printability. Aiming to offer a high-performance alternative, here we present a range of amphiphilic star-shaped diblock copolypeptides of l-glutamate and l-leucine residues with different topologies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China. Electronic address:
ACS Nano
December 2024
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!