Influence of counting methodology on erythrocyte ratios in the mouse micronucleus test.

Environ Mol Mutagen

Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan 48674, USA.

Published: April 2013

The mammalian erythrocyte micronucleus test is widely used to investigate the potential interaction of a test substance with chromosomes or mitotic apparatus of replicating erythroblasts. In addition to the primary endpoint, micronucleated erythrocyte frequency, the proportion of immature erythrocytes is measured to assess the influence of treatment on erythropoiesis. The guideline recommendation for an acceptable limit of the immature erythrocyte fraction of not < 20% of the controls was based on traditional scoring methods that consider RNA content. Flow-based sample analysis (e.g., MicroFlow®) characterizes a subpopulation of RNA-containing reticulocytes (RETs) based on CD71 (transferrin receptor) expression. As CD71+ cells represent a younger cohort of RETs, we hypothesized that this subpopulation may be more responsive than the RNA+ fraction for acute exposures. This study evaluated RET population in the peripheral blood of two strains of mice treated by oral gavage with three clastogens (cyclophosphamide, N-ethyl-N-nitrosourea, and methyl methanesulfonate). Although CD71+ frequencies correlated with RNA-based counts, the relative treatment-related reductions were substantially greater. Accordingly, when using the flow cytometry-based CD71+ values for scoring RETs in an acute treatment design, it is suggested that a target value ≥ 5% CD71+ reticulocytes (i.e., 95% depression in reticulocytes proportion) be considered as acceptable for a valid assay.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.21754DOI Listing

Publication Analysis

Top Keywords

micronucleus test
8
influence counting
4
counting methodology
4
erythrocyte
4
methodology erythrocyte
4
erythrocyte ratios
4
ratios mouse
4
mouse micronucleus
4
test mammalian
4
mammalian erythrocyte
4

Similar Publications

The increasing use of products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes.

View Article and Find Full Text PDF

Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.

View Article and Find Full Text PDF

Sevoflurane is an inhalation anesthetic widely used for general anesthesia, but its genotoxic potential is controversial in clinical studies. It is unknown whether the effects are due to surgery or the anesthetic. Thus, for the first time, the present study investigated genotoxicity in peripheral blood cells and in target organs (liver, lung, and kidney) and micronucleus (MN) in the bone marrow of a single exposure to sevoflurane at three different concentrations in monitored mice.

View Article and Find Full Text PDF

Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin and quercetin nanoparticles against imidacloprid-induced genotoxicity in Swiss albino mice.

Method: The ionic gelation procedure was used to synthesize the quercetin nanoparticles and characterized for their hydrodynamic diameter, zeta potential, SEM, TEM, FT-IR, and encapsulation efficiency. Total 48 mice were taken in eight groups with six animals in each group.

View Article and Find Full Text PDF

The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations.

NanoImpact

December 2024

In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK. Electronic address:

Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the in vitro mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!