Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency SEPs P100 and N140 were recorded at midline cortical electrode positions (Fz, Cz, and Pz) in response to stimulation of the index finger of the dominant hand in fifteen baseball players (baseball group) and in fifteen athletes in sports such as swimming, track and field events, and soccer (sports group) that do not require fine somatosensory discrimination or motor control of the hand. The long-latency SEPs were measured under a passive condition (no response required) and a reaction time (RT) condition in which subjects were instructed to rapidly push a button in response to stimulus presentation. The peak P100 and peak N140 latencies and RT were significantly shorter in the baseball group than the sports group. Moreover, there were significant positive correlations between RT and both the peak P100 and the peak N140 latencies. Specific athletic training regimens that involve the hand may induce neuroplastic alterations in the cortical hand representation areas playing a vital role in rapid sensory processing and initiation of motor responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-012-3361-8 | DOI Listing |
J Neurosci
May 2024
MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g.
View Article and Find Full Text PDFCells
June 2023
Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy.
Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.
View Article and Find Full Text PDFExp Brain Res
January 2023
Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 153-8902, Tokyo, Japan.
In humans, peripheral sensory stimulation inhibits subsequent motor evoked potentials (MEPs) induced by transcranial magnetic stimulation; this process is referred to as short- or long-latency afferent inhibition (SAI or LAI, respectively), depending on the inter-stimulus interval (ISI) length. Although upper limb SAI and LAI have been well studied, lower limb SAI and LAI remain under-investigated. Here, we examined the time course of the soleus (SOL) muscle MEP following electrical tibial nerve (TN) stimulation at the popliteal fossa at ISIs of 20-220 ms.
View Article and Find Full Text PDFNeuroimage
July 2022
Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy. Electronic address:
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs).
View Article and Find Full Text PDFFront Physiol
January 2022
Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany.
Background: Somatosensory-evoked potentials (SEP) represent a non-invasive tool to assess neural responses elicited by somatosensory stimuli acquired via electrophysiological recordings. To date, there is no comprehensive evaluation of SEPs for the diagnostic investigation of exercise-induced functional neuroplasticity. This systematic review aims at highlighting the potential of SEP measurements as a diagnostic tool to investigate exercise-induced functional neuroplasticity of the sensorimotor system by reviewing studies comparing SEP parameters between athletes and healthy controls who are not involved in organized sports as well as between athlete cohorts of different sport disciplines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!