Pseudomonas aeruginosa, a wide-spread opportunistic pathogen, often complicates clinical treatments due to its resistance to a large variety of antimicrobials, especially in immune compromised patients, occasionally leading to death. However, the resistance to antimicrobials varies greatly among the P. aeruginosa isolates, which raises a question on whether some sub-lineages of P. aeruginosa might have greater potential to develop antimicrobial resistance than others. To explore this question, we divided 160 P. aeruginosa isolates collected from cities of USA and China into distinct genotypes using I-CeuI, a special endonuclease that had previously been proven to reveal phylogenetic relationships among bacteria reliably due to the highly conserved 26-bp recognition sequence. We resolved 10 genotypes by I-CeuI analysis and further divided them into 82 sub-genotypes by endonuclease cleavage with SpeI. Eight of the 10 genotypes contained both multi-drug resistant (MDR) and less resistant isolates based on comparisons of their antimicrobial resistance profiles (ARPs). When the less resistant or susceptible isolates from different genotypes were exposed to eight individual antimicrobials, they showed similar potential to become resistant with minor exceptions. This is to our knowledge the first report to examine correlations between phylogenetic sub-lineages of P. aeruginosa and their potential to become resistant to antimicrobials. This study further alerts the importance and urgency of antimicrobial abuse control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-012-9862-4DOI Listing

Publication Analysis

Top Keywords

aeruginosa isolates
12
antimicrobial resistance
12
pseudomonas aeruginosa
8
sub-lineages aeruginosa
8
genotypes i-ceui
8
potential resistant
8
isolates
5
resistance
5
aeruginosa
5
resistant
5

Similar Publications

Assessment of bacteriological and immunological markers in urinary tract infection and the effect of antibiotics on the isolated bacteria.

Cell Mol Biol (Noisy-le-grand)

January 2025

Laboratory of Plant Improvement and Valorization of Agro-resources, National School of Engineers of Sfax, University of Sfax, Sfax LR.16ES20, Tunisia.

Urinary tract infections (UTIs) are recognized as the second most common medical condition, following respiratory infections. Despite the availability of numerous efficacious antibiotics for the management of UTIs, the rising incidence of bacterial resistance presents significant challenges in the treatment of these infections. Bacteria are endowed with the ability to reproduce and develop resistance mechanisms against antibiotics.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a key concern in clinical settings due to its high level of resistance to antibiotics, making infections given rise to this bacterium very problematic to treat. The rise of multidrug-resistant bacteria poses a danger to treatments and stresses the necessity to find new antimicrobial drugs. In a neoteric study, P.

View Article and Find Full Text PDF

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Bioprospecting indigenous bacteria from landfill leachate for enhanced polypropylene microplastics degradation.

J Hazard Mater

January 2025

Bioprocesses Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India. Electronic address:

Plastic pollution, especially microplastics (MPs), is a severe environmental threat. Due to the significant environmental issues posed by plastics, it is critical to use an effective and sustainable degradation technique. The study aimed to isolate and identify Indigenous bacterial strains from landfill leachate (LL) to evaluate its potential for degrading Polypropylene microplastics (PPMPs).

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!