A fibrin clot is stabilised through the formation of factor XIIIa-catalysed intermolecular ε-lysyl-γ-glutamyl covalent cross-links between α chains to form α polymers and between γ chains to form γ dimers. In a previous study we characterised fibrinogen Seoul II, a heterozygous dysfibrinogen in which a cross-linking acceptor site in Aα chain, Gln328, was replaced with Pro (AαQ328P). Following on the previous study, we investigated whether the alteration of Gln residues Aα328 and Aα366 affects fibrin polymerisation and α chain cross-linking. We have expressed three recombinant fibrinogens: AαQ328P, AαQ366P, and AαQ328,366P in Chinese hamster ovary cells, purified these fibrinogens from the culture media and performed biochemical tests to see how the introduced changes affect fibrin polymerisation and α chain cross-linking. Thrombin-catalysed fibrin polymerisation of all variants was impaired with the double mutation being the most impaired. In contrast, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed α polymer formation with all three engineered proteins. This study demonstrates that AαQ328 and AαQ366 are important for normal fibrin clot formation and in the absence of residues AαQ328 and AαQ366, other Gln residues in the α chain can support FXIIIa-catalysed fibrin cross-linking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1160/TH12-08-0609 | DOI Listing |
Biofabrication
January 2025
Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Str.9-11, Oldenburg, 26129, GERMANY.
Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless modus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles.
View Article and Find Full Text PDFDrug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFACS Nano
January 2025
UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France.
Among cardiovascular diseases, thrombotic diseases such as ischemic heart disease and acute ischemic strokes are the most lethal, responsible by themselves for a quarter of worldwide deaths. While surgical treatments exist, they may not be used in all situations, and systemic thrombolytic drug injection, such as recombinant tissue plasminogen activators (rtPA), often remains necessary, despite serious limitations including short therapeutic window, severe side effects, and failure to address the complex nature of thrombi. This prompted intense research into alternative thrombolytics or delivery methods, including nanomedicine.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, 50134 Firenze, Italy.
Endometriosis (EM), a chronic inflammatory condition predominantly affecting women of reproductive age, has been linked to an elevated risk of thrombosis, though its underlying molecular mechanisms remain incompletely understood. In this case-control study, involving 71 EM patients and 71 matched controls, we explored the structural and functional changes in fibrinogen and their potential role in thrombosis. Key oxidative stress markers, such as reactive oxygen species (ROS) levels in blood lymphocytes, monocytes, and granulocytes, along with plasma lipid peroxidation markers and total antioxidant capacity, were measured.
View Article and Find Full Text PDFLab Chip
January 2025
Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 1840 Entrepreneur Dr., Raleigh, NC, 27695 USA.
Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!