Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electrophilic nature of chalcones (1,3-diphenylprop-2-en-1-ones) and many other α,β-unsaturated carbonyl compounds is crucial for their biological activity, which is often based on thiol-mediated regulation processes. To better predict their biological activity a simple screening assay for the assessment of the second-order rate constants (k(2)) in thia-Michael additions was developed. Hence, a clear structure-activity relationship of 16 differentially decorated hydroxy-alkoxychalcones upon addition of cysteamine could be established. Moreover, amongst other naturally occurring α,β-unsaturated carbonyl compounds k(2) values for curcumin and cinnamaldehyde were gained while cinnamic acids or esters gave no or very slow reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ob27163j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!