A persistent, low-grade inflammation accompanies many chronic diseases that are promoted by physical inactivity and improved by exercise. The beneficial effects of exercise are mediated in large part by peroxisome proliferator-activated receptor γ coactivator (PGC) 1α, whereas its loss correlates with propagation of local and systemic inflammatory markers. We examined the influence of PGC-1α and the related PGC-1β on inflammatory cytokines upon stimulation of muscle cells with TNFα, Toll-like receptor agonists, and free fatty acids. PGC-1s differentially repressed expression of proinflammatory cytokines by targeting NF-κB signaling. Interestingly, PGC-1α and PGC-1β both reduced phoshorylation of the NF-κB family member p65 and thereby its transcriptional activation potential. Taken together, the data presented here show that the PGC-1 coactivators are able to constrain inflammatory events in muscle cells and provide a molecular link between metabolic and immune pathways. The PGC-1s therefore represent attractive targets to not only improve metabolic health in diseases like type 2 diabetes but also to limit the detrimental, low-grade inflammation in these patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554897 | PMC |
http://dx.doi.org/10.1074/jbc.M112.375253 | DOI Listing |
Nat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFNat Commun
December 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.
Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.
Cell Death Dis
December 2024
Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Psychology, University of Bath, Bath, UK.
Introduction: White matter hyperintensity volumes (WMHVs) are disproportionally prevalent in individuals with Alzheimer's disease (AD), potentially reflecting neurovascular injury. We quantify the association between AD polygenic risk score (AD-PRS) and WMHV, exploring single-nucleotide polymorphisms (SNPs) that are proximal to genes overexpressed in cerebrovascular cell species.
Methods: In a UK-Biobank sub-sample (mean age = 64, range = 45-81 years), we associate WMHV with (1) AD-PRS estimated via SNPs across the genome (minus apolipoprotein E [APOE] locus) and (2) AD-PRS estimated with SNPs proximal to specific genes that are overexpressed in cerebrovascular cell species.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!