The fidelity of RNA synthesis depends on both accurate template-mediated nucleotide selection and proper maintenance of register between template and RNA. Loss of register, or transcriptional slippage, is particularly likely on homopolymeric runs in the template. Transcriptional slippage can alter the coding capacity of mRNAs and is used as a regulatory mechanism. Here we describe mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II that substantially increase the level of transcriptional slippage. Alleles of RPB1 (RPO21) with elevated slippage rates were identified among 6-azauracil-sensitive mutants and were also isolated using a slippage-dependent reporter gene. Biochemical characterization of polymerase II isolated from these mutants confirms elevated levels of transcriptional slippage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554935 | PMC |
http://dx.doi.org/10.1074/jbc.M112.429506 | DOI Listing |
FASEB J
December 2024
Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
Human mitochondrial RNA polymerase (POLRMT) and protein factors TFAM and TFB2M assemble on mitochondrial DNA promoters to initiate promoter-specific transcription. We present cryo-EM structures of two initiation complexes, IC3 and slipped-IC3, with fully resolved transcription bubbles containing RNA transcripts starting from +1 and -1 positions, respectively. These structures reveal the mechanisms of promoter melting, start site selection, and slippage synthesis.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France.
Nature
November 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!