Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transforming growth factor-β (TGF-β) signaling pathway promotes tissue fibrosis and scarring through SMAD (small mothers against decapentaplegic)-dependent and SMAD-independent mechanisms. However, inhibition of SMAD-mediated signal transduction alone induces an excessive inflammatory response that impairs the antifibrotic effects of TGF-β inhibitors. In this study, we designed and characterized a dual-functional transcription activator protein 1 (AP-1) and SMAD decoy oligodeoxynucleotide, antifibrosis oligodeoxynucleotide 4 (AFODN4) in vitro and in vivo. AFODN4 binds directly to recombinant AP-1 and SMAD with high affinity. AFODN4 significantly inhibited the DNA-binding and transcriptional activities of both AP-1 and SMAD, as well as the production of fibrotic mediators stimulated by TGF-β1 or TGF-β2 in L929 murine fibroblasts. Local administration of AFODN4 significantly inhibited fibrosis associated with acute dermal wounds in mice. Intriguingly, AFODN4 inhibited AP-1-mediated production of proinflammatory mediators, which can be caused by blockage of SMAD alone in vitro and in vivo. Collectively, these findings suggest that dual inhibition of SMAD and AP-1 signaling by AFODN4 is a useful strategy for the development of new antifibrotic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/jid.2012.443 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!