In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way's halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z = 7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature11612 | DOI Listing |
Sensors (Basel)
December 2024
Department of Computer Engineering, Konya Food and Agriculture University, Konya 42080, Turkey.
Contemporary environmental challenges are increasingly significant. The primary cause is the drastic changes in climates. The prediction of solar radiation is a crucial aspect of solar energy applications and meteorological forecasting.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Liuxia Street, Hangzhou 310023, China.
Broadcast ephemeris data are essential for the precision and reliability of the BeiDou Navigation Satellite System (BDS) but are highly susceptible to anomalies caused by various interference factors, such as ionospheric and tropospheric effects, solar radiation pressure, and satellite clock biases. Traditional threshold-based methods and manual review processes are often insufficient for detecting these complex anomalies, especially considering the distinct characteristics of different satellite types. To address these limitations, this study proposes an automated anomaly detection method using the IF-TEA-LSTM model.
View Article and Find Full Text PDFMolecules
December 2024
Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland.
In this work, for the first time, the sorption behaviour of platinum and palladium on polyethylene microplastics (PE-MP) was studied. To simulate natural conditions, part of PE-MP was subjected to the ageing process in lake water under the influence of solar radiation. The original and aged PE-MP was characterised using elemental analysis, FT-IR, SEM-EDX, and nitrogen porosimetry methods.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
Photocatalytic hydrogen evolution using inexhaustible clean solar energy is considered as a promising strategy. In order to build an efficient photocatalytic hydrogen production system to satisfy the demands of practical applications, it is of great significance to design photocatalysts that offer high activity, low cost, and high stability. Herein, a series of cheap CdS/Ni(OH) composite photocatalysts were designed and synthesized using the hydrothermal method.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Biomedical Sensors & Systems Lab, University of Memphis, Memphis, TN 38152, USA.
A battery-operated biomedical wearable device gradually assists in clinical tasks to monitor patients' health states regarding early diagnosis and detection. This paper presents the development of a self-powered portable electronic module by integrating an onboard energy-harvesting facility for electrocardiogram (ECG) signal processing and personalized health monitoring. The developed electronic module provides a customizable approach to power the device using a lithium-ion battery, a series of silicon photodiode arrays, and a solar panel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!