Trypanosoma brucei BRCA2 acts in a life cycle-specific genome stability process and dictates BRC repeat number-dependent RAD51 subnuclear dynamics.

Nucleic Acids Res

The Wellcome Trust Centre for Molecular Parasitology, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.

Published: January 2013

Trypanosoma brucei survives in mammals through antigenic variation, which is driven by RAD51-directed homologous recombination of Variant Surface Glycoproteins (VSG) genes, most of which reside in a subtelomeric repository of >1000 silent genes. A key regulator of RAD51 is BRCA2, which in T. brucei contains a dramatic expansion of a motif that mediates interaction with RAD51, termed the BRC repeats. BRCA2 mutants were made in both tsetse fly-derived and mammal-derived T. brucei, and we show that BRCA2 loss has less impact on the health of the former. In addition, we find that genome instability, a hallmark of BRCA2 loss in other organisms, is only seen in mammal-derived T. brucei. By generating cells expressing BRCA2 variants with altered BRC repeat numbers, we show that the BRC repeat expansion is crucial for RAD51 subnuclear dynamics after DNA damage. Finally, we document surprisingly limited co-localization of BRCA2 and RAD51 in the T. brucei nucleus, and we show that BRCA2 mutants display aberrant cell division, revealing a function distinct from BRC-mediated RAD51 interaction. We propose that BRCA2 acts to maintain the huge VSG repository of T. brucei, and this function has necessitated the evolution of extensive RAD51 interaction via the BRC repeats, allowing re-localization of the recombinase to general genome damage when needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553974PMC
http://dx.doi.org/10.1093/nar/gks1192DOI Listing

Publication Analysis

Top Keywords

brc repeat
12
brca2
9
trypanosoma brucei
8
brucei brca2
8
brca2 acts
8
rad51 subnuclear
8
subnuclear dynamics
8
brc repeats
8
brca2 mutants
8
mammal-derived brucei
8

Similar Publications

Toxoplasma gondii from Gabonese forest, Central Africa: First report of an African wild strain.

PLoS Negl Trop Dis

January 2025

Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.

The protozoan Toxoplasma gondii is a ubiquitous and highly prevalent parasite that can theoretically infect all warm-blooded vertebrates. In humans, toxoplasmosis causes infections in both immunodeficient and immunocompetent patients, congenital toxoplasmosis, and ocular lesions. These manifestations have different degrees of severity.

View Article and Find Full Text PDF

Tumor suppressor BRCA2 executes homologous recombination to repair DNA double-strand breaks in collaboration with RAD51, involving exon 11 and 27. Exon 11 constitutes a region where pathogenic variants (PVs) accumulate, and mutations in this region are known to contribute to carcinogenesis. However, the impact of the heterozygous PVs of BRCA2 exon 11 on the life quality beyond cancer risk, including male fertility, remains unclear.

View Article and Find Full Text PDF

Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data.

Cell Genom

November 2024

Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA. Electronic address:

Article Synopsis
  • Repeat expansions in the C9orf72 gene are a leading genetic cause of ALS and frontotemporal dementia, but understanding how this mutation causes neuron death is still unclear, complicating the search for effective therapies.
  • Researchers analyzed data from over 41,000 ALS and healthy samples to identify potential treatments, discovering that acamprosate, a drug used for other conditions, might be repurposed for C9orf72-related diseases.
  • Their findings demonstrated that acamprosate has neuroprotective properties in cell models and works similarly well as the current treatment, riluzole, showing the potential of using genomic data to find new drug applications.
View Article and Find Full Text PDF

Homologous recombination (HR) is an important mechanism for repairing DNA double-strand breaks (DSBs) and preserving genome integrity. Pathogenic mutations in the HR proteins BRCA2 and the RAD51 paralogs predispose individuals to breast, ovarian, pancreatic, and prostate cancer. The RAD51 paralogs: RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 form two complexes RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3).

View Article and Find Full Text PDF

BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode.

Nat Commun

September 2024

Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.

BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!