Seasonality of meningitis in Africa and climate forcing: aerosols stand out.

J R Soc Interface

Combining Health Information, Computation and Statistics, School of Health and Medicine, Lancaster University, Lancaster, UK.

Published: February 2013

Bacterial meningitis is an ongoing threat for the population of the African Meningitis Belt, a region characterized by the highest incidence rates worldwide. The determinants of the disease dynamics are still poorly understood; nevertheless, it is often advocated that climate and mineral dust have a large impact. Over the last decade, several studies have investigated this relationship at a large scale. In this analysis, we scaled down to the district-level weekly scale (which is used for in-year response to emerging epidemics), and used wavelet and phase analysis methods to define and compare the time-varying periodicities of meningitis, climate and dust in Niger. We mostly focused on detecting time-lags between the signals that were consistent across districts. Results highlighted the special case of dust in comparison to wind, humidity or temperature: a strong similarity between districts is noticed in the evolution of the time-lags between the seasonal component of dust and meningitis. This result, together with the assumption of dust damaging the pharyngeal mucosa and easing bacterial invasion, reinforces our confidence in dust forcing on meningitis seasonality. Dust data should now be integrated in epidemiological and forecasting models to make them more realistic and usable in a public health perspective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565698PMC
http://dx.doi.org/10.1098/rsif.2012.0814DOI Listing

Publication Analysis

Top Keywords

dust
7
meningitis
5
seasonality meningitis
4
meningitis africa
4
africa climate
4
climate forcing
4
forcing aerosols
4
aerosols stand
4
stand bacterial
4
bacterial meningitis
4

Similar Publications

PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells.

J Transl Med

January 2025

Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.

Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.

View Article and Find Full Text PDF

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

Human Urinary Occurrence of Thiourea Vulcanization Accelerators and Their Human Exposure.

Environ Pollut

January 2025

Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P. R. China. Electronic address:

Thiourea vulcanization accelerators (TVAs) have been detected in various household dust samples, indicating their widespread human exposure. Until now, the occurrence of TVAs in human urine, a suitable matrix for assessing human exposure, has remained unknown. The present study comprehensively examined eight kinds of TVAs in urine samples (n = 277) from participants living in Taizhou, China.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!