Plant mitochondria are proposed to act as signaling organelles in the orchestration of defense responses to biotic stress and acclimation responses to abiotic stress. However, the primary signal(s) being generated by mitochondria and then interpreted by the cell are largely unknown. Recently, we showed that mitochondria generate a sustained burst of superoxide (O 2(-)) during particular plant-pathogen interactions. This O 2(-) burst appears to be controlled by mitochondrial components that influence rates of O 2(-) generation and scavenging within the organelle. The O 2(-) burst appears to influence downstream processes such as the hypersensitive response, indicating that it could represent an important mitochondrial signal in support of plant stress responses. The findings generate many interesting questions regarding the upstream factors required to generate the O 2(-) burst, the mitochondrial events that occur in support of and in parallel with this burst and the downstream events that respond to this burst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745582PMC
http://dx.doi.org/10.4161/psb.22749DOI Listing

Publication Analysis

Top Keywords

burst appears
8
burst
7
signaling role
4
mitochondrial
4
role mitochondrial
4
mitochondrial superoxide
4
superoxide burst
4
stress
4
burst stress
4
stress plant
4

Similar Publications

Introduction Thoracolumbar fractures, particularly burst fractures, represent a significant health concern due to their prevalence and functional impact. This study evaluates the efficacy of short-segment posterior fixation with intermediate screw instrumentation in treating unstable thoracolumbar fractures. Methods A prospective study was conducted from July 2022 to December 2023, including 26 patients with traumatic thoracolumbar fractures.

View Article and Find Full Text PDF

Bibliometric analysis of levosimendan.

Int J Cardiol Heart Vasc

February 2025

Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Background: Levosimendan (LEVO), a calcium sensitizer and adenosine triphosphate-dependent potassium channel opener, has been widely used for decades in medical and surgical patients for advanced heart failure (HF), right ventricular failure, cardiogenic shock, takotsubo cardiomyopathy, pulmonary hypertension, and so on. Currently, as the limited scope and lack of comprehensive data in current LEVO publications, there is an increasing obstacle to conducting new studies that require integrated information and quantifiable results. Thus, the current study was performed to identify the research trends and hot spots in LEVO-related publications using bibliometric software.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.

View Article and Find Full Text PDF

Harnessing LRET in a rationally designed "sandwich" fluorescent probe for selective ClO sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, PR China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.

Article Synopsis
  • Upconversion nanoparticles (UCNPs) are advanced light-emitting materials that use near-infrared light for sensing, helping to avoid issues caused by natural fluorescence in biological samples.
  • Traditional UCNP designs have limitations in accurately locating luminescent doped ions within their structure, leading to background noise and inefficient light emission.
  • The new core-middle-shell UCNPs-IR820 design improves luminescence detection by incorporating a "sandwich" structure that enhances energy transfer, allowing for effective signaling changes in response to specific analytes like ClO.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!