We baked low-calorie bread by mixing charred cellulose granules with wheat flour, using the charred cellulose granules to eliminate toxic xanthene food dyes contained in processed foods from the alimentary canal. The size of the charred cellulose granules played an important role in determining good breadmaking properties in respect of the bread height (mm) and specific volume (SV, cm3/g). Charred cellulose granules with a diameter above 270 μm were blended with wheat flour at 10% to obtain bread with a lower caloric content (1020 kcal/gram of bread) than the control bread (1126 kcal) made solely from wheat flour. The charred cellulose granules taken out from the bread adsorbed toxic xanthene food dyes at around pH 6.5, such that toxic food dyes taken into the alimentary canal were excreted in the feces with the non-digestible cellulose granules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.120203 | DOI Listing |
Mol Pharm
January 2025
Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa.
This work investigates the adhesive property of Soy Protein Isolate (SPI) polymer solution by studying mechanical properties of composites formed using waste wood granules and SPI solutions. To improve the adhesive strength of SPI solution, Carboxymethyl Cellulose Sodium (NaCMC) was mixed (in the weight ratios of 9:1 and 8:2) due to its strong gel formation capabilities. The adhesive performance of these composites was further investigated in the presence and absence of non-toxic additives, including sorbitol (SOR) and stearic acid (SA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Int J Pharm
January 2025
School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In-line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study is to find relationships between Lenterra in-line measurements and granule properties and tablet properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!