We consider the fractionation problem in radiation therapy. Tumor sites in which the dose-limiting organ at risk (OAR) receives a substantially lower dose than the tumor, bear potential for hypofractionation even if the α/β-ratio of the tumor is larger than the α/β-ratio of the OAR. In this work, we analyze the interdependence of the optimal fractionation scheme and the spatial dose distribution in the OAR. In particular, we derive a criterion under which a hypofractionation regimen is indicated for both a parallel and a serial OAR. The approach is based on the concept of the biologically effective dose (BED). For a hypothetical homogeneously irradiated OAR, it has been shown that hypofractionation is suggested by the BED model if the α/β-ratio of the OAR is larger than α/β-ratio of the tumor times the sparing factor, i.e. the ratio of the dose received by the tumor and the OAR. In this work, we generalize this result to inhomogeneous dose distributions in the OAR. For a parallel OAR, we determine the optimal fractionation scheme by minimizing the integral BED in the OAR for a fixed BED in the tumor. For a serial structure, we minimize the maximum BED in the OAR. This leads to analytical expressions for an effective sparing factor for the OAR, which provides a criterion for hypofractionation. The implications of the model are discussed for lung tumor treatments. It is shown that the model supports hypofractionation for small tumors treated with rotation therapy, i.e. highly conformal techniques where a large volume of lung tissue is exposed to low but nonzero dose. For larger tumors, the model suggests hyperfractionation. We further discuss several non-intuitive interdependencies between optimal fractionation and the spatial dose distribution. For instance, lowering the dose in the lung via proton therapy does not necessarily provide a biological rationale for hypofractionation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/58/1/159DOI Listing

Publication Analysis

Top Keywords

optimal fractionation
16
spatial dose
12
dose distribution
12
oar
12
dose
9
α/β-ratio tumor
8
larger α/β-ratio
8
α/β-ratio oar
8
oar work
8
fractionation scheme
8

Similar Publications

Load-Shifting Strategies for Cost-Effective Emission Reductions at Wastewater Facilities.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.

Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.

View Article and Find Full Text PDF

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

Machine learning analysis of rivaroxaban solubility in mixed solvents for application in pharmaceutical crystallization.

Sci Rep

January 2025

Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, 21944, Taif, Saudi Arabia.

This study investigates the use of machine learning models to predict solubility of rivaroxaban in binary solvents based on temperature (T), mass fraction (w), and solvent type. Using a dataset with over 250 data points and including solvents encoded with one-hot encoding, four models were compared: Gradient Boosting (GB), Light Gradient Boosting (LGB), Extra Trees (ET), and Random Forest (RF). The Jellyfish Optimizer (JO) algorithm was applied to tune hyperparameters, enhancing model performance.

View Article and Find Full Text PDF

Eliminating osmotic stress during cryoprotectant loading: A mathematical investigation of solute-solvent transport.

Cryobiology

January 2025

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:

Osmotic stresses during cryoprotectant loading induce changes in cellular volume, leading to membrane damage or even cell death. Appropriate model-guided mitigation of these osmotic gradients during cryoprotectant loading is currently lacking, but would be highly beneficial in reducing viability loss during the loading process. To address this need, we reformulate the two-parameter formalism described by Jacobs and Stewart for cryoprotectant loading under the constraint of constant cell volume.

View Article and Find Full Text PDF

Dispersionless Nonhybrid Density Functional.

J Chem Theory Comput

January 2025

Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States.

A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!