In this review, a non-standard application of high-resolution transmission electron microscope (HRTEM), namely the creation of so-called NanoLaboratory for the nanomaterial property studies within its pole piece, is presented. The most modern research trends with respect to nanotube, graphene and nanowire, as well as electrical, mechanical and electromechanical properties are demonstrated. In addition, the unique possibilities of modeling real technological processes inside HRTEM, for example, the performance of Li-ion batteries, are illustrated. The contribution particularly highlights the recent research endeavors of our Tsukuba group in line with all the above-mentioned directions of in situ TEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmicro/dfs078 | DOI Listing |
Adv Sci (Weinh)
January 2025
SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China.
Cold welding of metals at the nanoscale has been demonstrated to play a significant role in bottom-up manufacturing and self-healing processes of nanostructures and nanodevices. However, the welding mechanism at the nanoscale is not well understood. In this study, a comprehensive demonstration of the cold welding process of gold nanorods with different modes is presented through in situ liquid cell transmission electron microscopy.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Istanbul, Türkiye.
Colorectal cancer is the second most common cause of cancer-related deaths worldwide and the third most common cancer overall. In this study, we investigate the anti-colon cancer potential of phytochemically, and thermally synthesised novel green carbon dots based on Rhododendron luteum (RL-CDs). A new synthesis method was used to produce carbon dots obtained from the Rhododendron luteum (RL) plant in an environmentally friendly manner.
View Article and Find Full Text PDFJ Microsc
January 2025
School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
Transmission electron microscopy can be used for the characterisation of a wide range of thin specimens, but soft matter and aqueous samples such as gels, nanoparticle dispersions, and emulsions will dry out and collapse under the microscope vacuum, therefore losing information on their native state and ultimately limiting the understanding of the sample. This study examines commonly used techniques in transmission electron microscopy when applied to the characterisation of cryogenically frozen Pickering emulsion samples. Oil-in-water Pickering emulsions stabilised by 3 to 5 nm platinum nanoparticles were cryogenically frozen by plunge-freezing into liquid ethane to retain the native structure of the system without inducing crystallisation of the droplet oil cores.
View Article and Find Full Text PDFBiofactors
January 2025
Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France.
Inflammation of adipose tissue is a contributing factor to many chronic diseases associated with obesity. We previously showed that micronutrients such as vitamin D (VD) limited this metabolic inflammation by decreasing inflammatory markers expression including miR-155 (microRNA-155) or miR-146a in different in vitro and in vivo models. These miRNAs could be incorporated into extracellular vesicles (EVs) in order to modulate the activity of target cells.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Botany, Periyar University, Salem, Tamilnadu, India.
The green methods for the synthesis of silver nanoparticles (AgNPs) has developed popularity recently due to the low preparation costs, environmental friendliness, and non-toxicity of the precursors. In this study, AgNPs were synthesized using leaf extract from Merremia quinquefolia. Spectroscopic techniques were used for analyzing the functional groups, morphology, crystalline phase, and elemental composition of nanomaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!