Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transcranial magnetic stimulation (TMS) can activate the corticobulbar system and briefly recruit upper airway dilator muscles, improving the inspiratory airflow dynamics of flow-limited respiratory cycles during sleep. The purpose of this investigation was to quantify the effects of TMS-induced twitches applied during sleep on flow-limited respiratory cycles in 14 obstructive sleep apnoea patients. Submental muscle motor threshold (SUB(MT)) and motor-evoked potential (SUB(MEP)) were examined during wakefulness and sleep. The TMS-induced twitches were applied during stable non-rapid eye movement (NREM) sleep, during non-consecutive flow-limited respiratory cycles at the beginning of inspiration, with intensities varying from sleep SUB(MT) up to maximal stimulation without arousal. Maximal inspiratory flow, inspiratory volume, shifts of electroencephalogram frequency and pulse rate variability were assessed. Cortical and/or autonomic arousal after TMS was observed in only 13.8% of all twitches applied. The SUB(MT) increased during NREM sleep (wakefulness, 24.8 ± 9.3%; and NREM sleep, 28.3 ± 9.5%; P = 0.003). Augmenting stimulator output from SUB(MT) to maximal stimulation before arousal enhanced SUB(MEP) peak-to-peak amplitude (from 0.09 ± 0.05 to 0.4 ± 0.3 mV; P = 0.005) with a concomitant rise in maximal inspiratory flow (from 376.2 ± 107.9 to 411.9 ± 109.3 ml s(-1); P = 0.008) and inspiratory volume (from 594.8 ± 189.2 to 663.7 ± 203.1 ml; P = 0.001) in all but one patient. Corticobulbar excitability of submental muscles decreases during NREM sleep. Brief recruitment of submental muscles with TMS during sleep improves upper airway mechanics without arousing patients from sleep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.2012.070359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!