Super-selective cryogenic etching for sub-10 nm features.

Nanotechnology

Molecular Foundry, Lawrence Berkeley National Lab, USA. Oxford Instruments, UK.

Published: January 2013

Plasma etching is a powerful technique for transferring high-resolution lithographic masks into functional materials. Significant challenges arise with shrinking feature sizes, such as etching with thin masks. Traditionally this has been addressed with hard masks and consequently additional costly steps. Here we present a pathway to high selectivity soft mask pattern transfer using cryogenic plasma etching towards low-cost high throughput sub-10 nm nanofabrication. Cryogenic SF(6)/O(2) gas chemistry is studied for high fidelity, high selectivity inductively coupled plasma etching of silicon. Selectivity was maximized on large features (400 nm-1.5 μm) with a focus on minimizing photoresist etch rates. An overall anisotropic profile with selectivity around 140:1 with a photoresist mask for feature size 1.5 μm was realized with this clean, low damage process. At the deep nanoscale, selectivity is reduced by an order of magnitude. Despite these limits, high selectivity is achieved for anisotropic high aspect ratio 10 nm scale etching with thin polymeric masks. Gentler ion bombardment resulted in planar-dependent etching and produced faceted sub-100 nm features.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/1/015305DOI Listing

Publication Analysis

Top Keywords

plasma etching
12
high selectivity
12
etching thin
8
etching
7
high
6
selectivity
6
super-selective cryogenic
4
cryogenic etching
4
etching sub-10
4
sub-10 features
4

Similar Publications

Polymer-Free and Dry Patterning of Wafer-Scale Two-Dimensional Semiconductors via van der Waals Delamination.

Nano Lett

January 2025

Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) semiconductors have attracted a considerable amount of interest as channel materials for future transistors. Patterning of 2D semiconductors is crucial for separating continuous monolayers into independent units. However, the state-of-the-art 2D patterning process is largely based on photolithography and high-energy plasma/RIE etching, leading to unavoidable residues and degraded device uniformity, which remains a critical challenge for the practical application of 2D electronics.

View Article and Find Full Text PDF

A Study on the Development of Real-Time Chamber Contamination Diagnosis Sensors.

Sensors (Basel)

December 2024

Department of Energy & Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea.

Plasma processes are critical for achieving precise device fabrication in semiconductor manufacturing. However, polymer accumulation during processes like plasma etching can cause chamber contamination, adversely affecting plasma characteristics and process stability. This study focused on developing a real-time sensor system for diagnosing chamber contamination by quantitatively monitoring polymer accumulation.

View Article and Find Full Text PDF

The addition of hydrogen to nitrogen facilitates the formation of nitride phases in the plasma nitriding processes of stainless steels, though it also induces the deterioration of their mechanical properties. This study presents a hydrogen-free plasma nitriding process for fabricating a nitrogen-expanded austenite phase (γ) on an AISI 316 stainless steel surface. The steel substrate was nitrided in N-Ar plasma with various gas compositions discharged by radio frequency (RF) and direct current (DC) modes.

View Article and Find Full Text PDF

Etching Chemistry Process Optimization of Ethylene Diluted with Helium (CH/He) in Interconnect Integration.

Micromachines (Basel)

November 2024

School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

This study explores the effects of different passivation gases on the properties of polymers formed on aluminum (Al) sidewalls during the etching process in Al-based interconnect structures. The research compares the use of nitrogen (N) and ethylene diluted with helium (CH/He) as passivation gases, focusing on the resulting polymer's composition, thickness, and strength, as well as the levels of residual chlorine post-etch. The findings reveal that using CH leads to the formation of a thinner, weaker polymer with lower chlorine residue compared to the thicker, stronger polymer formed with N.

View Article and Find Full Text PDF

In Situ Pre-Metallization Cleaning of CoSi Contact-Hole Patterns with Optimized Etching Process.

Micromachines (Basel)

November 2024

School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

We examined how controlling variables in a pre-metallization Ar sputter-etching process for in situ contact-hole cleaning affects the contact-hole profile, etching rate, and substrate damage. By adjusting process parameters, we confirmed that increasing plasma power lowered the DC bias but enhanced the etching rate of SiO, while increasing RF power raised both, with RF power having a more pronounced effect. Higher Ar flow rate reduced etching uniformity and slightly lowered the DC bias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!