Tapping mode atomic force microscopy (AFM) is employed for dynamic plowing lithography of exfoliated graphene on silicon dioxide substrates. The shape of the graphene sheet is determined by the movement of the vibrating AFM probe. There are two possibilities for lithography depending on the applied force. At moderate forces, the AFM tip only deforms the graphene and generates local strain of the order of 0.1%. For sufficiently large forces the AFM tip can hook graphene and then pull it, thus cutting the graphene along the direction of the tip motion. Electrical characterization by AFM based electric force microscopy, Kelvin probe force microscopy and conductive AFM allows us to distinguish between the truly separated islands and those still connected to the surrounding graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/1/015303DOI Listing

Publication Analysis

Top Keywords

force microscopy
16
atomic force
8
dynamic plowing
8
plowing lithography
8
forces afm
8
graphene
7
afm
6
microscopy
4
microscopy based
4
based manipulation
4

Similar Publications

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Engineering Polar Vortices via Strain Soliton Interactions in Marginally Twisted Multilayer Graphene.

Nano Lett

January 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.

Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.

View Article and Find Full Text PDF

Analysis of the contractile work of a single cardiomyocyte by atomic force microscopy.

Anal Methods

January 2025

International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.

Atomic force microscopy (AFM) is widely used for the imaging and characterization of biological cells because of its nanoscale spatial resolution and force resolution. However, in the previous studies, the inability to effectively detect the contractile work of cardiomyocytes and the 3D dynamic expressions of their contraction and relaxation behaviors posed significant challenges. Therefore, this work presents a method for the analysis of the contractile work of a single cardiomyocyte by AFM.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!