A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. | LitMetric

Background: Atrial fibrillation (AF) is common and associated with adverse health outcomes. Timely detection of AF can be challenging using traditional diagnostic tools. Smartphone use is increasing and may provide an inexpensive and user-friendly means to diagnoseAF.

Objective: To test the hypothesis that a smartphone-based application could detect an irregular pulse fromAF.

Methods: Seventy-six adults with persistent AF were consented for participation in our study. We obtained pulsatile time series recordings before and after cardioversion using an iPhone 4S camera. A novel smartphone application conducted real-time pulse analysis using 2 statistical methods: root mean square of successive RR difference (RMSSD/mean) and Shannon entropy (ShE). We examined the sensitivity, specificity, and predictive accuracy of both algorithms using the 12-lead electrocardiogram as the gold standard.

Results: RMSDD/mean and ShE were higher in participants in AF than in those with sinus rhythm. The 2 methods were inversely related to AF in regression models adjusting for key factors including heart rate and blood pressure (beta coefficients per SD increment in RMSDD/mean and ShE were-0.20 and-0.35; P<.001). An algorithm combining the 2 statistical methods demonstrated excellent sensitivity (0.962), specificity (0.975), and accuracy (0.968) for beat-to-beat discrimination of an irregular pulse during AF from sinus rhythm.

Conclusions: In a prospectively recruited cohort of 76 participants undergoing cardioversion for AF, we found that a novel algorithm analyzing signals recorded using an iPhone 4S accurately distinguished pulse recordings during AF from sinus rhythm. Data are needed to explore the performance and acceptability of smartphone-based applications for AF detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698570PMC
http://dx.doi.org/10.1016/j.hrthm.2012.12.001DOI Listing

Publication Analysis

Top Keywords

irregular pulse
8
atrial fibrillation
8
novel application
4
application detection
4
detection irregular
4
pulse iphone
4
iphone patients
4
patients atrial
4
fibrillation background
4
background atrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!