When radioactive accidents occur, modern tools in information technology for emergency response are good solutions to reduce the impact. Since few information-technology-based applications were developed for people during radioactive accidents, a previous study (Tsai et al., 2012) proposed augmented-reality-based mobile escape guidelines. However, because of the lack of transparent escape routes and indoor escape guidelines, the usability of the guidelines is limited. Therefore, this study introduces route planning and mobile three-dimensional (3D) graphics techniques to address the identified problems. The proposed approach could correctly present the geographical relationship from user locations to the anticipated shelters, and quickly show the floor-plan drawings as users are in the buildings. Based on the testing results, in contrast to the previous study, this study offered better escape routes, when the participants performed self-evacuation in outdoor and indoor environments. Overall, this study is not only a useful reference for similar studies, but also a beneficial tool for emergency response during radioactive accidents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2012.11.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!