The aim of this study was to evaluate the capacity of three semen processing techniques, Percoll gradient centrifugation, Swim-up and a combination of Swim-up and Percoll gradient centrifugation, to reduce the viral load of bovine viral diarrhea virus (BVDV) in experimentally infected semen samples. The evaluation was performed using two approaches: first, searching for the presence of virus in the processed samples (via virus titration and RT-PCR) and second, ascertaining the possible interference on in vitro embryo production. The sperm count and DNA integrity (Comet assay) of the processed samples were analyzed (Experiment 1). The amount of virus in the processed samples was determined by titration in cell culture (Experiment 2). The samples processed by Swim up/Percoll gradient centrifugation were utilized for in vitro embryo production, and the embryos produced were tested for BVDV by RT-PCR (Experiment 3). Sperm concentration, Comet assay and embryo production were analyzed by chi-squared tests (P<0.05). There was a significant difference between sperm separation techniques when the sperm count and Comet assay were analyzed. The sperm count obtained from the Swim up/Percoll gradient centrifugation group was lower than that obtained in either of the two other groups (Swim up and Percoll gradient centrifugation), and the Comet assay showed that the combination of the two semen processing techniques (Swim up/Percoll gradient) produced a 1.1% prevalence of Comet level 2, which was not observed in the other groups. The BVDV titer (10(6.68)TCID(50)/mL) added to experimentally infected semen samples decreased after Percoll gradient centrifugation to 10(2.3)-10(1)TCID(50)/mL; for the Swim up group, the titer range was 10(3.3)-10(1.87)TCID(50)/mL, and in the Swim up/Percoll gradient centrifugation group, BVDV was undetectable. The decreases in titer varied from 99.9% in the Swim up-processed group to 100% in the Swim up/Percoll gradient centrifugation group. In vitro embryo production displayed similar blastocyst development rates among all groups, and RT-PCR was negative for the produced embryos. The data showed that the combination of Swim up/Percoll gradient centrifugation promoted the elimination of BVDV from the semen samples without damaging spermatozoa cells and also allowed successful in vitro embryo production free of BVDV. Hence, the risk of BVDV contamination is negligible for the embryo recipient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2012.11.029DOI Listing

Publication Analysis

Top Keywords

gradient centrifugation
12
processed samples
12
embryo production
12
semen processing
8
processing techniques
8
bovine viral
8
viral diarrhea
8
diarrhea virus
8
semen samples
8
percoll gradient
8

Similar Publications

Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

Photosynth Res

January 2025

Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.

View Article and Find Full Text PDF

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs).

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!