According to international guidelines skin penetration experiments can be carried out using freshly excised or frozen stored skin. However, this recommendation refers to data obtained in experiments with human cadaver skin. In our study, the percutaneous penetration of the occupationally relevant chemicals anisole, cyclohexanone and 1,4-dioxane was investigated for freshly excised as well as for 4 and 30 days at -20°C stored human skin using the diffusion cell technique. As indicator for the impairment of skin barrier by freezing cholesterol dissolution was determined in the solvents in exposure chambers of diffusion cells. Considering the percutaneously penetrated amounts, the following ranking was determined: 1,4-dioxane>anisole>cyclohexanone (decline to a factor of 5.9). The differences of fluxes between freshly excised and frozen stored skin (4 and 30 days) were not significant (p>0.05). Cholesterol dissolved from the skin indicates no significant differences between freshly excised and frozen stored skin. This study shows that freezing of human skin for up to 30 days does not alter the skin barrier function and the permeability of chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2012.11.016 | DOI Listing |
Biomed Opt Express
December 2024
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland.
Prostate cancer is a global health issue that requires new diagnostic methods to provide accurate and precise visualization of prostate tissue on the micro-scale. Such methods have the potential to improve nerve-sparing surgery and to provide image guidance during prostate biopsy. In this feasibility study, we assess the potential of three-dimensional wide-field optical coherence tomography (OCT), covering a volumetric imaging field-of-view up to 46 × 46 × 1 mm, to visualize micro-architecture in 18 freshly excised human prostate specimens.
View Article and Find Full Text PDFCurr Protoc
December 2024
Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
Front Mol Neurosci
October 2024
Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging.
View Article and Find Full Text PDFBr J Cancer
December 2024
Department of Otolaryngology - Head and Neck Surgery, Technical University of Munich (TUM), School of Medicine and Health, TUM University Hospital, Munich, Germany.
Background: The primary goal of surgery in HNSCC is the complete resection of tumor cells with maximum preservation of normal tissue. The membrane Hsp70-targeting fluorescence labelled peptide TPP-IRDye800 represents a promising tool for real-time intraoperative tumor visualization, enabling the detection of true tumor margins, critical isles of high-grade dysplasia and LN metastases.
Methods: Membrane Hsp70 (mHsp70) expression on HNSCC cell lines and primary HNSCC was determined by flow cytometry and fluorescence microscopy using FITC-conjugated mAb cmHsp70.
Pharmacol Res
November 2024
Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!