Marteilia refringens is a protozoan parasite recognized as a significant pathogen of the European flat oyster Ostrea edulis. The life cycle of this species is still poorly known, although there is evidence of the need for intermediate host(s). In the present study, we have used molecular approaches to identify this parasite in samples of the dwarf oyster Ostrea stentina after reports of massive mortality along the Tunisian coasts. In 2009 we evaluated the status of O. stentina from Monastir and checked if there was an infection with M. refringens, using polymerase chain reaction assays. Of the 103 tested O. stentina, 85 were PCR-positive using a Marteilia genus-specific assay. Additional assays were subsequently carried out on some samples collected in 2010 in Monastir and processed for histology, transmission electron microscopy and complementary molecular analyses. PCR was carried out to amplify the IGS and ITS regions. Histological and transmission electron microscopy analyses allowed us to confirm the presence of this parasite in the digestive gland tissue of O. stentina and to characterize it at the ultrastructural level. This is the first record of the occurrence of M. refringens in the oyster O. stentina along the Tunisian coasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2012.11.004DOI Listing

Publication Analysis

Top Keywords

oyster ostrea
12
protozoan parasite
8
marteilia refringens
8
dwarf oyster
8
ostrea stentina
8
tunisian coasts
8
transmission electron
8
electron microscopy
8
stentina
6
characterization protozoan
4

Similar Publications

Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here we assess how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate.

View Article and Find Full Text PDF

The quality aspects of () cultured in Valli di Comacchio were examined across different seasons. Nutritional quality parameters, antioxidant activity, total carotenoids, and contaminants were determined in winter, summer, and autumn (December, June, and October). Seasonal variations in nutritional parameters were observed.

View Article and Find Full Text PDF
Article Synopsis
  • Ostrea edulis, the European flat oyster, has experienced significant population declines over the past 200 years, prompting restoration efforts focused on restocking and conservation.
  • This study utilized whole-genome sequencing to identify seven distinct genetic clusters of the oyster, revealing complex population structures and signs of genetic mixing in Scandinavian regions.
  • The findings emphasize the need to understand genetic diversity and local adaptation for effective conservation strategies to restore native European flat oyster populations.
View Article and Find Full Text PDF

Ocean ecosystems have been subjected to anthropogenic influences for centuries, but the scale of past ecosystem changes is often unknown. For centuries, the European flat oyster (Ostrea edulis), an ecosystem engineer providing biogenic reef habitats, was a culturally and economically significant source of food and trade. These reef habitats are now functionally extinct, and almost no memory of where or at what scales this ecosystem once existed, or its past form, remains.

View Article and Find Full Text PDF
Article Synopsis
  • - Oysters are crucial for marine ecosystems as they filter water, create habitats, and recycle nutrients, but their populations in Europe have declined significantly since the 19th and 20th centuries.
  • - The field of oyster restoration in aquaculture is gaining attention for its potential to improve ecosystem resilience and biodiversity, yet restoring their populations requires a challenging understanding of historical ecological baselines before human impact.
  • - Analysis of over 2,000 ancient oyster shells in Denmark reveals the effects of human harvesting on oyster size and age, indicating that older oysters existed in the Mesolithic era compared to the Neolithic, and offering insights for sustainable harvesting and current restoration efforts amid climate change.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!