Most clinical tools for measuring spasticity, such as the Modified Ashworth Scale (MAS) and the Modified Tardieu Scale (MTS), are not sufficiently accurate or reliable. This study investigated the clinimetric properties of an instrumented spasticity assessment. Twenty-eight children with spastic cerebral palsy (CP) and 10 typically developing (TD) children were included. Six of the children with CP were retested to evaluate reliability. To quantify spasticity in the gastrocnemius (GAS) and medial hamstrings (MEH), three synchronized signals were collected and integrated: surface electromyography (sEMG); joint-angle characteristics; and torque. Muscles were manually stretched at low velocity (LV) and high velocity (HV). Spasticity parameters were extracted from the change in sEMG and in torque between LV and HV. Reliability was determined with intraclass-correlation coefficients and the standard error of measurement; validity by assessing group differences and correlating spasticity parameters with the MAS and MTS. Reliability was moderately high for both muscles. Spasticity parameters in both muscles were higher in children with CP than in TD children, showed moderate correlation with the MAS for both muscles and good correlation to the MTS for the MEH. Spasticity assessment based on multidimensional signals therefore provides reliable and clinically relevant measures of spasticity. Moreover, the moderate correlations of the MAS and MTS with the objective parameters further stress the added value of the instrumented measurements to detect and investigate spasticity, especially for the GAS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2012.11.003DOI Listing

Publication Analysis

Top Keywords

spasticity parameters
12
spasticity
10
quantify spasticity
8
cerebral palsy
8
multidimensional signals
8
spasticity assessment
8
mas mts
8
children
6
clinical measurement
4
measurement quantify
4

Similar Publications

Initial Contact with Forefoot or Rearfoot in Spastic Patients After Stroke-Three-Dimensional Gait Analysis.

Neurol Int

January 2025

Laboratório de Marcha, Centro de Medicina de Reabilitação de Alcoitão, 2649-506 Alcabideche, Portugal.

Background/objectives: Post-stroke hemiparetic gait often presents with asymmetric patterns to compensate for stability deficits. This study examines gait differences in chronic stroke patients with spastic hemiparesis based on initial foot contact type-forefoot versus rearfoot.

Methods: Thirty-four independently walking spastic hemiparetic patients were retrospectively analyzed.

View Article and Find Full Text PDF

Non-invasive brain stimulation (NIBS) techniques have emerged as a promising non-pharmacological adjunct to neurorehabilitation. Children with Cerebral Palsy (CP) exhibit altered cortical excitability, and while CP remains incurable, physiotherapy combined with other interventions is essential for managing motor dysfunction. Although some studies have examined NIBS using various stimulation parameters, there is limited evidence regarding its effects on the lower extremities and optimal administration protocols.

View Article and Find Full Text PDF

Identifying impairments and compensatory strategies for temporal gait asymmetry in post-stroke persons.

Sci Rep

January 2025

Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Kitakatsuragi-gun, Koryo, Nara, 635-0832, Japan.

In post-stroke persons, temporal gait asymmetry (TGA) during comfortable gait involves a combination of pure impairments and compensatory strategies. In this study, we aimed to differentiate between pure impairments and compensatory strategies underlying TGA in post-stroke individuals and identify associated clinical factors. We examined 39 post-stroke individuals who participated in comfortable walking speed (CWS) and rhythmic auditory cueing (RAC).

View Article and Find Full Text PDF

Purpose: The purpose of this case was to investigate objectively and quantitatively the effects of the application of repeated focal muscle vibration (fMV) associated with neurocognitive exercise on a 46-year-old patient with spastic paraparesis secondary to the surgical removal of a C5-C6 ependymoma.

Methods: We have evaluated gait parameters, spasticity, and pain with clinical scales. We have applied focal muscle vibration on quadriceps femoris, hamstrings, gastrocnemius, and iliopsoas muscles bilaterally.

View Article and Find Full Text PDF

Motion analysis for the evaluation of dynamic spasticity during walking: A systematic scoping review.

Mult Scler Relat Disord

January 2025

Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China. Electronic address:

Background: Three-dimensional (3D) gait analysis has the potential to assess dynamic spasticity (DS). However, little is known about which parameters can be utilized for assessment.

Objective: To evaluate the application of 3D gait analysis in assessing DS during walking and to identify the most relevant parameters for clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!