Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application.

J Plant Physiol

Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701, Republic of Korea.

Published: March 2013

Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are core factors in driving vesicle fusion with target membranes, which is critical in eukaryotes having distinct subcellular organelles. Amongst them, vesicle-associated membrane proteins (VAMP) 721 and 722 are involved in plant growth/development and immunity. In the course of stress responses, plants often show retarded growth. The precise mechanism of this retardation is not fully understood. The plant stress hormone abscisic acid (ABA), which can cause growth inhibition, down-regulates VAMP721/722 protein levels but not transcript levels. Enhanced growth inhibition and early depletion of the amount of VAMP721/722 caused by ABA in haploinsufficient VAMP721(+/-)VAMP722(-/-) and VAMP721(-/-)VAMP722(+/-) plants suggest that ABA impedes plant growth in part by reducing VAMP721/722 proteins. Since VAMP721/722 are engaged in exocytosis, our data implies that ABA-induced growth retardation may result from diminished secretory activities leading to decreased transport of molecules required for plant growth in the plasma membrane and cell wall.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2012.11.001DOI Listing

Publication Analysis

Top Keywords

vesicle-associated membrane
8
membrane proteins
8
721 722
8
growth inhibition
8
plant growth
8
growth
7
proteins
4
proteins 721
4
722 required
4
required unimpeded
4

Similar Publications

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Endosomal sorting protein SNX4 limits synaptic vesicle docking and release.

Elife

December 2024

Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, Netherlands.

Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal.

View Article and Find Full Text PDF

Multiomics Approach Identifies Key Proteins and Regulatory Pathways in Colorectal Cancer.

J Proteome Res

January 2025

The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China.

The prevalence rate of colorectal cancer (CRC) has dramatically increased in recent decades. However, robust CRC biomarkers with therapeutic value for early diagnosis are still lacking. To comprehensively reveal the molecular characteristics of CRC development, we employed a multiomics strategy to investigate eight different types of CRC samples.

View Article and Find Full Text PDF

Required minimal protein domain of flower for synaptobrevin2 endocytosis in cytotoxic T cells.

Cell Mol Life Sci

December 2024

Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.

Flower, a highly conserved protein, crucial for endocytosis and cellular fitness, has been implicated in cytotoxic T lymphocyte (CTL) killing efficiency through its role in cytotoxic granule (CG) endocytosis at the immune synapse (IS). This study explores the molecular cues that govern Flower-mediated CG endocytosis by analyzing uptake of Synaptobrevin2, a protein specific to CG in mouse CTL. Using immunogold electron microscopy and total internal fluorescence microscopy, we found that Flower translocates in a stimulus-dependent manner from small vesicles to the IS, thereby ensuring specificity in CG membrane protein recycling.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNT), the agent causing botulism, exhibit the highest potency among bacterial toxins and pose a significant threat to both humans and animals. The current in vivo method (mouse lethality assay, MLA) is inappropriate for real-time and pen-side assessment of the occurring outbreak or case. Herein, we describe a reflective-based biosensor capable of detecting the toxin's type and activity state by competitive immunoassay and endopeptidase activity, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!