A novel β-glucosidase gene (PtBglu1) from the thermophilic fungus, Paecilomyces thermophila, was cloned and expressed in Pichia pastoris. PtBglu1 contained an open reading frame of 1440-bp nucleotides and encoded a protein of 479 amino acids which showed significant similarity to other fungal β-glucosidases from glycoside hydrolase (GH) family 1. The recombinant β-glucosidase (PtBglu1) was secreted at high level of 190.2 U mL(-1) in high cell density fermentor (5L). PtBglu1 was purified to homogeneity, and was found to be a glycoprotein with molecular mass of 56.7 kDa. The purified PtBglu1 showed optimum catalytic activity at pH 6.0 and 55 °C. The enzyme exhibited broad substrate specificity with highest activity toward pNP-β-D-glucopyranoside, followed by pNP-β-D-galactopyranoside and cellobiose. The K(m) values for pNP-β-D-glucopyranoside, cellobiose, gentiobiose and salicin were 0.55 mM, 1.0 mM, 1.74 mM and 6.85 mM, respectively. These properties make PtBglu1 a potential candidate for various industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2012.09.086 | DOI Listing |
Nucleic Acids Res
January 2025
College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico. Electronic address:
Levan, a β(2 → 6) linked D-fructofuranosyl polymer, is gaining significant attention in basic and applied research. It has been demonstrated that most properties are related to levan molecular weight but also its β(2 → 1) branching degree. In this paper the relationship between levan branching degree, particle size, and molecular weight is reviewed, exploring also how these structural parameters influence levan susceptibility to exo- and endolevanase hydrolysis for levans produced by three recombinants bacterial levansucrases.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
Sulfated fucan from sea cucumber has received growing interest in recent decades. Insight into the primary structure of sulfated fucan is fundamental to elucidate their bioactivity. The sea cucumber Holothuria mexicana possesses a high market demand, while the structure of its sulfated fucan (Hm-FUC) remains unclear.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
Macroalgae growing in the polar regions are exposed to extreme environment conditions and may induce differences in the structural and bioactive properties of their polysaccharides. Six brown macroalgae viz. kelp species - Saccharina latissima, Laminaria digitata, and Alaria esculenta; rockweed Fucus distichus; and filamentous macroalgae - Chorda filum and Chordaria flageliformis, from the Arctic were investigated for polysaccharides and their bioactivity.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:
The antiparallelly organized α-chitin exhibits greater thermodynamic stability and is more recalcitrant to degradation than its parallel allomorph, β-chitin, thereby impeding the efficient utilization of this natural resource. The processive chitinases usually provide the majority of catalytic potential for chitin biodegradation. Using high-speed atomic force microscopy (HS-AFM), we revealed that the opposite traffic of OfChi-h, the only processive chitinase involved in chitin biodegradation in the insect Ostrinia furnacalis, is a key factor that significantly affects α-chitin degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!