Production of a commercially important biodegradable polymer, pullulan, by Aureobasidium pullulans from four agricultural wastes namely wheat bran, rice bran, coconut kernel and palm kernel was evaluated in solid state fermentation. Under the experimental conditions, palm kernel resulted in highest concentration of pullulan (16 g/L) among the four solid substrates. Optimum initial pH and moisture content for pullulan production were found out to be 6.5 and 50% respectively. 18.43 g/L of pullulan was produced from Asian palm kernel with initial pH 6.5 after 7 days of fermentation and yeast like morphology was predominant under this condition. Among different nitrogen sources tried in this study, yeast extract was found to the best. The pullulan produced from palm kernel was characterized by FTIR and (1)H NMR. The results were matching with that of commercial pullulan. Thus, Asian palm kernel appears to be an attractive low cost carbon source for the production of pullulan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2012.09.062DOI Listing

Publication Analysis

Top Keywords

palm kernel
24
asian palm
12
production pullulan
8
pullulan aureobasidium
8
aureobasidium pullulans
8
pullulan produced
8
kernel
7
pullulan
7
palm
6
production
4

Similar Publications

Enhancing biofuel pellet quality using torrefaction and co-pelletization of palm kernel shell and empty fruit bunch.

Environ Sci Pollut Res Int

January 2025

Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.

Palm kernel shell (PKS) and empty fruit bunch (EFB) are potential biomass resources for producing solid biofuel for energy applications. However, raw EFB and PKS are not uniform in size and pose rotting behavior. Torrefaction and co-pelletization are both effective methods to improve their combustion and mechanical characteristics.

View Article and Find Full Text PDF

There is a growing demand for a plant-based diet (meat analogue/plant-based milk) due to an increase in awareness towards health issues, environmental sustainability, and animal ethical issues. The replacement of dairy has recently been one of the market efforts to fulfill such demand. Yet, challenges arise when consumers are reluctant to accept plant-based milk (PBM) due to the mismatch of organoleptic profile between PBM and the actual dairy.

View Article and Find Full Text PDF

Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.

View Article and Find Full Text PDF

Evaluation of 9,10-anthraquinone contamination in tea products from Indonesian manufacturers and its carcinogenic risk to consumer health.

Food Chem Toxicol

January 2025

European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N°, La Cañada de San Urbano, 04120, Almería, Spain. Electronic address:

This study aimed to determine 9,10-anthraquinone (AQ) levels in Indonesian tea products from different manufacturers and assess the AQ's associated health risks. AQ levels increased significantly during withering and drying stages, using pinewood as a heat source. Generally, black tea was highly contaminated by AQ followed by green tea, oolong tea, and white tea.

View Article and Find Full Text PDF

Macauba is an underexplored palm with significant potential for food-grade vegetable oil production. Its fruits yield two distinct sources of oil, the pulp and the kernel, each with its unique composition, emerging as a potential vegetable oil source with high competitiveness with well-established conventional oil sources. Besides the oil, macauba fruits are rich in essential nutrients, including proteins, minerals, vitamins, dietary fiber, and phytochemicals, with outstanding health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!