The objective of this work was to prepare chitosan/polyethylene glycol fumarate (chitosan/PEGF) blend films as wound dressings and to evaluate the influence of composition ratio on the blending properties of the films. Blending chitosan with PEGF obviated the brittleness of neat chitosan film. Film topography performed by atomic force microscopy illustrated that blending could increase and control the surface roughness of the neat film. Their water vapor transmission rates were close to the range of 904-1447 g(-2)day(-1) found to be proper candidates for dressing the wounds with moderate exudates. Controlled water solubility, swelling, wettability and surface tension of the blend films were also evaluated. The blend films showed a powerful antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus (Kill%>99.76 ± 0.16%). Physical properties as well as antibacterial activity assessments showed that among different compositions, the film comprising 80 wt% chitosan and 20 wt% PEGF is a suitable candidate for biomedical applications as a wound dressing material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2012.09.002DOI Listing

Publication Analysis

Top Keywords

blend films
12
chitosan/polyethylene glycol
8
glycol fumarate
8
antibacterial activity
8
film
5
blend
4
fumarate blend
4
blend film
4
film physical
4
physical antibacterial
4

Similar Publications

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Magnesium chloride-infused chitosan-poly (vinyl alcohol) electrolyte films: A versatile solution for energy storage devices.

Int J Biol Macromol

January 2025

Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.

The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly (vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Single use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

A Co-Blended and Compounded Photosensitive Resin with Improved Mechanical Properties and Thermal Stability for Nail Polish Application.

Polymers (Basel)

December 2024

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate photosensitive resin is synthesized by using epoxidized soybean oil as a raw material and reacting it with acrylic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!