A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stent graft performance in the treatment of abdominal aortic aneurysms: the influence of compliance and geometry. | LitMetric

Stent graft performance in the treatment of abdominal aortic aneurysms: the influence of compliance and geometry.

J Biomech

Galway Medical Technologies Centre, Department of Mechanical and Industrial, Engineering, Galway Mayo Institute of Technology, Galway, Ireland.

Published: January 2013

The long-term success of the endovascular procedure for the treatment of Abdominal Aortic Aneurysms (AAAs ) depends on the secure fixation of the proximal end and the geometry of the stent-graft (SG) device. Variations in SG types can affect proximal fixation and SG hemodynamics. Such hemodynamic variations can have a catastrophic effect on the vascular system and may result from a SG/arterial wall compliance mismatch and the sudden decrease in cross-sectional area at the bifurcation, which may result in decreased distal perfusion, increased pressure wave reflection and increased stress at the interface between the stented and non-stented portion of the vessel. To examine this compliance mismatch, a commercial SG device was tested experimentally under a physiological pressure condition in a silicone AAA model based on computed tomography scans. There was a considerable reduction in compliance of 54% and an increase in the pulse wave velocity of 21%, with a significant amount of the forward pressure wave being reflected. To examine the SG geometrical effects, a commercial bifurcated geometry was compared computationally and experimentally with a geometrical taper in the form of a blended section, which provided a smooth transition from the proximal end to both iliac legs. The sudden contraction of commercial SG at the bifurcation region causes flow separation within the iliac legs, which is known to cause SG occlusion and increased proximal pressure. The blended section along the bifurcation region promotes a greater uniformity of the fluid flow field within the distal legs, especially, during the deceleration phase with reduced boundary layer reversal. In order to reduce the foregoing losses, abrupt changes of cross-section should be avoided. Geometrical tapers could lead to improved clinical outcomes for AAA SGs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2012.11.026DOI Listing

Publication Analysis

Top Keywords

treatment abdominal
8
abdominal aortic
8
aortic aneurysms
8
compliance mismatch
8
pressure wave
8
iliac legs
8
bifurcation region
8
stent graft
4
graft performance
4
performance treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!