Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasminogen activator inhibitor type 1 (PAI-l), a key part of the fibrinolytic system, plays a critical host protective role during the acute phase of infection by regulating interferon(IFN)-γ release. IFN-γ regulates PAI-1 expression, which suggests an intricate interplay between PAI-1 and IFN-γ. Here, using the notion of a feedback loop, we report the complicated regulatory relationship between PAI-1 and IFN-γ. Mice were inoculated intravenously with 1×10(3) colony forming units of Yersinia enterocolitica; PAI-1 deficiency enhanced lethality (p<0.0001) and increased bacterial growth and dissemination (p=0.08 on day 3, p=0.004 on day 5, respectively). PAI-1 significantly increased the levels IFN-γ mRNA (p<0.005), which may increase survival and decrease bacterial burden. Simultaneously, we showed that IFN-γ increased PAI-1 mRNA levels in vivo (p<0.05). Next, we investigated the transduction signal pathway. After mice were inoculated intraperitoneally with 50μg lipopolysaccharide (LPS), both levels of IFN-γ mRNA (p=0.05) and levels of PAI-1 mRNA (p<0.0001) decreased in MyD88-deficient mice. The same trend was also found in mice treated with 1000μg LPS. As a result of correlations of IFN-γ and PAI-1 in wild-type mice, we delineated the transduction signal pathway, namely MyD88-IFN-γ-PAI-1. The in vivo LPS-injected animal model further confirmed that PAI-1 feedback controlled IFN-γ in a direct or indirect manner. New perspectives of the relationship between PAI-1 and IFN-γ should help in understanding the complex and often conflicting results that have been reported in different infection models. Thus, the feedback loop between PAI-1 and IFN-γ is part of the dynamic equilibrium of coagulation and inflammation that helps maintain innate immune homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcmd.2012.11.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!