Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721062 | PMC |
http://dx.doi.org/10.1016/j.neuron.2012.09.031 | DOI Listing |
Phys Rev Lett
December 2024
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.
The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.
View Article and Find Full Text PDFSci Rep
January 2025
Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India.
The local pulse wave velocity (PWV) from large elastic arteries and its pressure-dependent changes within a cardiac cycle are potential biomarkers for cardiovascular risk stratification. However, pulse wave reflections can impair the accuracy of local PWV measurements. We propose a method to measure pressure-dependent variations in local PWV while minimizing the influence of pulse wave reflections.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, 07122, Spain.
When considering airborne epidemic spreading in social systems, a natural connection arises between mobility and epidemic contacts. As individuals travel, possibilities to encounter new people either at the final destination or during the transportation process appear. Such contacts can lead to new contagion events.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, 2440, Saudi Arabia.
This work explores the mathematical technique known as the Hirota bilinear transformation to investigate different wave behaviors of the nonlinear Rosenau equation, which is fundamental in the study of wave occurrences in a variety of physical systems such as fluid dynamics, plasma physics, and materials science, where nonlinear dynamics and dispersion offer significant functions. This equation was suggested to describe the dynamic behaviour of dense discrete systems. We use Mathematica to investigate these wave patterns and obtained variety of wave behaviors, such as M-shaped waves, mixed waves, multiple wave forms, periodic lumps, periodic cross kinks, bright and dark breathers, and kinks and anti-kinks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!