Alterations in the physical structure of vesicles and monolayers of phospholipids and soybean lecithin were monitored by measurement on the average fluorescence intensity changes from N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L-a-phosphatidyl ethanolamine (NBD-PE) located in the lipid matrices. This probe was intimately dispersed at a concentration of 1-2 mol-% in lipid membranes and had an emission sensitive to local environmental structure. Alterations in the structure of soybean lecithin vesicles were induced by the selective interaction of acetylcholine receptor with the agonist carbamylcholine and the antagonist alpha-bungarotoxin. Structural changes in vesicles with a 7:3 mole ratio of dipalmitoylphosphatidyl choline to dipalmitoylphosphatidic acid were observed for selective interactions between acetylcholinesterase and acetylcholine. Enhancement of fluorescence emission from the lipid membranes provided transduction of the selective binding events of the receptor and enzyme. A maximum sensitivity of about a 30% enhancement per micromole of carbamylcholine and a detection limit for the toxin of 10 nM were observed for the receptor. Fluorescence microscopy was used to establish that protein could be incorporated in monolayer lipid membranes and to provide information about potential mechanisms of fluorescence enhancement. These studies show that lipid membranes containing NBD-PE can be used as generic transducers of protein-ligand interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/an9901500147 | DOI Listing |
Microbiology (Reading)
January 2025
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.
Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, D-24148 Kiel, Germany.
A new alkaliphilic strain of a purple sulphur bacterium designated as Um2 (=KCTC 25734=VKM B-3893=UQM 41073) with bacteriochlorophyll and internal photosynthetic membranes of tubular type was isolated from the Umhei hydrothermal system (40 °C, pH 9.3 and salinity 0.42 g l) located in the Baikal rift zone (Russia).
View Article and Find Full Text PDFJ Anim Sci
January 2025
Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Total progressive motile sperm count (TPMSC) is a reliable index of fecundity evaluation of bull semen. It is an important determinant frozen semen yield and conception rate of females artificially inseminated. Seminal plasma metabolites and sperm lipids are closely related to sperm survival and motility, but their relationship with TPMSC is not well known.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze reversibly both the hydration and dehydration reactions of CO and HCO-, respectively. Higher plants contain many different isoforms of CAs that can be classified into α-, β- and γ-type subfamilies. β-type CAs play a key role in the CO-concentrating mechanism, thereby contributing to efficient photosynthesis in the C plants in addition to many other biochemical reactions in plant metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!